940 resultados para NLP (Natural Language Processing)
Resumo:
This research studies the application of syntagmatic analysis of written texts in the language of Brazilian Portuguese as a methodology for the automatic creation of extractive summaries. The automation of abstracts, while linked to the area of natural language processing (PLN) is studying ways the computer can autonomously construct summaries of texts. For this we use as presupposed the idea that switch to the computer the way a language is structured, in our case the Brazilian Portuguese, it will help in the discovery of the most relevant sentences, and consequently build extractive summaries with higher informativeness. In this study, we propose the definition of a summarization method that automatically perform the syntagmatic analysis of texts and through them, to build an automatic summary. The phrases that make up the syntactic structures are then used to analyze the sentences of the text, so the count of these elements determines whether or not a sentence will compose the summary to be generated
Resumo:
The semantic model described in this paper is based on ones developed for arithmetic (e.g. McCloskey et al. 1985, Cohene and Dehaene 1995), natural language processing (Fodor 1975, Chomsky 1981) and work by the author on how learners parse mathematical structures. The semantic model highlights the importance of the parsing process and the relationship between this process and the mathematical lexicon/grammar. It concludes by demonstrating that for a learner to become an efficient, competent mathematician a process of top-down parsing is essential.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.
Resumo:
People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.
Resumo:
Text cohesion is an important element of discourse processing. This paper presents a new approach to modeling, quantifying, and visualizing text cohesion using automated cohesion flow indices that capture semantic links among paragraphs. Cohesion flow is calculated by applying Cohesion Network Analysis, a combination of semantic distances, Latent Semantic Analysis, and Latent Dirichlet Allocation, as well as Social Network Analysis. Experiments performed on 315 timed essays indicated that cohesion flow indices are significantly correlated with human ratings of text coherence and essay quality. Visualizations of the global cohesion indices are also included to support a more facile understanding of how cohesion flow impacts coherence in terms of semantic dependencies between paragraphs.
Resumo:
This presentation summarizes experience with the automated speech recognition and translation approach realised in the context of the European project EMMA.
Resumo:
Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic features for written texts. Second, we extract these features from three corpora, of speeches, essays, and newspaper articles. Third, we perform feature selection by means of statistical analyses, and determine a subset of features which efficiently discriminates between the three genres. We find that using as little as eight rhythmic features, documents can be adequately assigned to a given genre with an accuracy of around 80 %, significantly higher than the 33 % baseline which results from random assignment.
Resumo:
Taxonomies have gained a broad usage in a variety of fields due to their extensibility, as well as their use for classification and knowledge organization. Of particular interest is the digital document management domain in which their hierarchical structure can be effectively employed in order to organize documents into content-specific categories. Common or standard taxonomies (e.g., the ACM Computing Classification System) contain concepts that are too general for conceptualizing specific knowledge domains. In this paper we introduce a novel automated approach that combines sub-trees from general taxonomies with specialized seed taxonomies by using specific Natural Language Processing techniques. We provide an extensible and generalizable model for combining taxonomies in the practical context of two very large European research projects. Because the manual combination of taxonomies by domain experts is a highly time consuming task, our model measures the semantic relatedness between concept labels in CBOW or skip-gram Word2vec vector spaces. A preliminary quantitative evaluation of the resulting taxonomies is performed after applying a greedy algorithm with incremental thresholds used for matching and combining topic labels.
Resumo:
The large upfront investments required for game development pose a severe barrier for the wider uptake of serious games in education and training. Also, there is a lack of well-established methods and tools that support game developers at preserving and enhancing the games’ pedagogical effectiveness. The RAGE project, which is a Horizon 2020 funded research project on serious games, addresses these issues by making available reusable software components that aim to support the pedagogical qualities of serious games. In order to easily deploy and integrate these game components in a multitude of game engines, platforms and programming languages, RAGE has developed and validated a hybrid component-based software architecture that preserves component portability and interoperability. While a first set of software components is being developed, this paper presents selected examples to explain the overall system’s concept and its practical benefits. First, the Emotion Detection component uses the learners’ webcams for capturing their emotional states from facial expressions. Second, the Performance Statistics component is an add-on for learning analytics data processing, which allows instructors to track and inspect learners’ progress without bothering about the required statistics computations. Third, a set of language processing components accommodate the analysis of textual inputs of learners, facilitating comprehension assessment and prediction. Fourth, the Shared Data Storage component provides a technical solution for data storage - e.g. for player data or game world data - across multiple software components. The presented components are exemplary for the anticipated RAGE library, which will include up to forty reusable software components for serious gaming, addressing diverse pedagogical dimensions.
Resumo:
Community-driven Question Answering (CQA) systems that crowdsource experiential information in the form of questions and answers and have accumulated valuable reusable knowledge. Clustering of QA datasets from CQA systems provides a means of organizing the content to ease tasks such as manual curation and tagging. In this paper, we present a clustering method that exploits the two-part question-answer structure in QA datasets to improve clustering quality. Our method, {\it MixKMeans}, composes question and answer space similarities in a way that the space on which the match is higher is allowed to dominate. This construction is motivated by our observation that semantic similarity between question-answer data (QAs) could get localized in either space. We empirically evaluate our method on a variety of real-world labeled datasets. Our results indicate that our method significantly outperforms state-of-the-art clustering methods for the task of clustering question-answer archives.
Resumo:
L’augmentation de la croissance des réseaux, des blogs et des utilisateurs des sites d’examen sociaux font d’Internet une énorme source de données, en particulier sur la façon dont les gens pensent, sentent et agissent envers différentes questions. Ces jours-ci, les opinions des gens jouent un rôle important dans la politique, l’industrie, l’éducation, etc. Alors, les gouvernements, les grandes et petites industries, les instituts universitaires, les entreprises et les individus cherchent à étudier des techniques automatiques fin d’extraire les informations dont ils ont besoin dans les larges volumes de données. L’analyse des sentiments est une véritable réponse à ce besoin. Elle est une application de traitement du langage naturel et linguistique informatique qui se compose de techniques de pointe telles que l’apprentissage machine et les modèles de langue pour capturer les évaluations positives, négatives ou neutre, avec ou sans leur force, dans des texte brut. Dans ce mémoire, nous étudions une approche basée sur les cas pour l’analyse des sentiments au niveau des documents. Notre approche basée sur les cas génère un classificateur binaire qui utilise un ensemble de documents classifies, et cinq lexiques de sentiments différents pour extraire la polarité sur les scores correspondants aux commentaires. Puisque l’analyse des sentiments est en soi une tâche dépendante du domaine qui rend le travail difficile et coûteux, nous appliquons une approche «cross domain» en basant notre classificateur sur les six différents domaines au lieu de le limiter à un seul domaine. Pour améliorer la précision de la classification, nous ajoutons la détection de la négation comme une partie de notre algorithme. En outre, pour améliorer la performance de notre approche, quelques modifications innovantes sont appliquées. Il est intéressant de mentionner que notre approche ouvre la voie à nouveaux développements en ajoutant plus de lexiques de sentiment et ensembles de données à l’avenir.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Objective: The study was designed to validate use of elec-tronic health records (EHRs) for diagnosing bipolar disorder and classifying control subjects. Method: EHR data were obtained from a health care system of more than 4.6 million patients spanning more than 20 years. Experienced clinicians reviewed charts to identify text features and coded data consistent or inconsistent with a diagnosis of bipolar disorder. Natural language processing was used to train a diagnostic algorithm with 95% specificity for classifying bipolar disorder. Filtered coded data were used to derive three additional classification rules for case subjects and one for control subjects. The positive predictive value (PPV) of EHR-based bipolar disorder and subphenotype di- agnoses was calculated against diagnoses from direct semi- structured interviews of 190 patients by trained clinicians blind to EHR diagnosis. Results: The PPV of bipolar disorder defined by natural language processing was 0.85. Coded classification based on strict filtering achieved a value of 0.79, but classifications based on less stringent criteria performed less well. No EHR- classified control subject received a diagnosis of bipolar dis- order on the basis of direct interview (PPV=1.0). For most subphenotypes, values exceeded 0.80. The EHR-based clas- sifications were used to accrue 4,500 bipolar disorder cases and 5,000 controls for genetic analyses. Conclusions: Semiautomated mining of EHRs can be used to ascertain bipolar disorder patients and control subjects with high specificity and predictive value compared with diagnostic interviews. EHRs provide a powerful resource for high-throughput phenotyping for genetic and clinical research.
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
Este Trabajo Fin de Grado (TFG) tiene como objetivo la creación de un framework para su uso en sistemas de recomendación. Se ha realizado por dos personas en la modalidad de trabajo en equipo. Las tareas de este TFG están divididas en dos partes, una realizada conjuntamente y la otra de manera individual. La parte conjunta se centra en construir un sistema que sea capaz de, a partir de comentarios y opiniones sobre puntos de interés (POIs) y haciendo uso de la herramienta de procesamiento de lenguaje natural AlchemyAPI, construir contextos formales y contextos formales multivaluados. Para crear este último es necesario hacer uso de ontologías. El context formal multivaluado es el punto de partida de la segunda parte (individual), que consistirá en, haciendo uso del contexto multivaluado, obtener un conjunto de dependencias funcionales mediante la implementación en Java del algoritmo FDMine. Estas dependencias podrán ser usados en un motor de recomendación. El sistema se ha implementado como una aplicación web Java EE versión 6 y una API para trabajar con contextos formales multivaluados. Para el desarrollo web se han empleado tecnologías actuales como Spring y jQuery. Este proyecto se presenta como un trabajo inicial en el que se expondrán, además del sistema construido, diversos problemas relacionados con la creacion de conjuntos de datos validos. Por último, también se propondrán líneas para futuros TFGs.