905 resultados para Multi-objective optimization problem
Resumo:
The major barrier to practical optimization of pavement preservation programming has always been that for formulations where the identity of individual projects is preserved, the solution space grows exponentially with the problem size to an extent where it can become unmanageable by the traditional analytical optimization techniques within reasonable limit. This has been attributed to the problem of combinatorial explosion that is, exponential growth of the number of combinations. The relatively large number of constraints often presents in a real-life pavement preservation programming problems and the trade-off considerations required between preventive maintenance, rehabilitation and reconstruction, present yet another factor that contributes to the solution complexity. In this research study, a new integrated multi-year optimization procedure was developed to solve network level pavement preservation programming problems, through cost-effectiveness based evolutionary programming analysis, using the Shuffled Complex Evolution (SCE) algorithm.^ A case study problem was analyzed to illustrate the robustness and consistency of the SCE technique in solving network level pavement preservation problems. The output from this program is a list of maintenance and rehabilitation treatment (M&R) strategies for each identified segment of the network in each programming year, and the impact on the overall performance of the network, in terms of the performance levels of the recommended optimal M&R strategy. ^ The results show that the SCE is very efficient and consistent in the simultaneous consideration of the trade-off between various pavement preservation strategies, while preserving the identity of the individual network segments. The flexibility of the technique is also demonstrated, in the sense that, by suitably coding the problem parameters, it can be used to solve several forms of pavement management programming problems. It is recommended that for large networks, some sort of decomposition technique should be applied to aggregate sections, which exhibit similar performance characteristics into links, such that whatever M&R alternative is recommended for a link can be applied to all the sections connected to it. In this way the problem size, and hence the solution time, can be greatly reduced to a more manageable solution space. ^ The study concludes that the robust search characteristics of SCE are well suited for solving the combinatorial problems in long-term network level pavement M&R programming and provides a rich area for future research. ^
Resumo:
Access to healthcare is a major problem in which patients are deprived of receiving timely admission to healthcare. Poor access has resulted in significant but avoidable healthcare cost, poor quality of healthcare, and deterioration in the general public health. Advanced Access is a simple and direct approach to appointment scheduling in which the majority of a clinic's appointments slots are kept open in order to provide access for immediate or same day healthcare needs and therefore, alleviate the problem of poor access the healthcare. This research formulates a non-linear discrete stochastic mathematical model of the Advanced Access appointment scheduling policy. The model objective is to maximize the expected profit of the clinic subject to constraints on minimum access to healthcare provided. Patient behavior is characterized with probabilities for no-show, balking, and related patient choices. Structural properties of the model are analyzed to determine whether Advanced Access patient scheduling is feasible. To solve the complex combinatorial optimization problem, a heuristic that combines greedy construction algorithm and neighborhood improvement search was developed. The model and the heuristic were used to evaluate the Advanced Access patient appointment policy compared to existing policies. Trade-off between profit and access to healthcare are established, and parameter analysis of input parameters was performed. The trade-off curve is a characteristic curve and was observed to be concave. This implies that there exists an access level at which at which the clinic can be operated at optimal profit that can be realized. The results also show that, in many scenarios by switching from existing scheduling policy to Advanced Access policy clinics can improve access without any decrease in profit. Further, the success of Advanced Access policy in providing improved access and/or profit depends on the expected value of demand, variation in demand, and the ratio of demand for same day and advanced appointments. The contributions of the dissertation are a model of Advanced Access patient scheduling, a heuristic to solve the model, and the use of the model to understand the scheduling policy trade-offs which healthcare clinic managers must make. ^
Resumo:
Bus stops are key links in the journeys of transit patrons with disabilities. Inaccessible bus stops prevent people with disabilities from using fixed-route bus services, thus limiting their mobility. The Americans with Disabilities Act (ADA) of 1990 prescribes the minimum requirements for bus stop accessibility by riders with disabilities. Due to limited budgets, transit agencies can only select a limited number of bus stop locations for ADA improvements annually. These locations should preferably be selected such that they maximize the overall benefits to patrons with disabilities. In addition, transit agencies may also choose to implement the universal design paradigm, which involves higher design standards than current ADA requirements and can provide amenities that are useful for all riders, like shelters and lighting. Many factors can affect the decision to improve a bus stop, including rider-based aspects like the number of riders with disabilities, total ridership, customer complaints, accidents, deployment costs, as well as locational aspects like the location of employment centers, schools, shopping areas, and so on. These interlacing factors make it difficult to identify optimum improvement locations without the aid of an optimization model. This dissertation proposes two integer programming models to help identify a priority list of bus stops for accessibility improvements. The first is a binary integer programming model designed to identify bus stops that need improvements to meet the minimum ADA requirements. The second involves a multi-objective nonlinear mixed integer programming model that attempts to achieve an optimal compromise among the two accessibility design standards. Geographic Information System (GIS) techniques were used extensively to both prepare the model input and examine the model output. An analytic hierarchy process (AHP) was applied to combine all of the factors affecting the benefits to patrons with disabilities. An extensive sensitivity analysis was performed to assess the reasonableness of the model outputs in response to changes in model constraints. Based on a case study using data from Broward County Transit (BCT) in Florida, the models were found to produce a list of bus stops that upon close examination were determined to be highly logical. Compared to traditional approaches using staff experience, requests from elected officials, customer complaints, etc., these optimization models offer a more objective and efficient platform on which to make bus stop improvement suggestions.
Resumo:
Many classical as well as modern optimization techniques exist. One such modern method belonging to the field of swarm intelligence is termed ant colony optimization. This relatively new concept in optimization involves the use of artificial ants and is based on real ant behavior inspired by the way ants search for food. In this thesis, a novel ant colony optimization technique for continuous domains was developed. The goal was to provide improvements in computing time and robustness when compared to other optimization algorithms. Optimization function spaces can have extreme topologies and are therefore difficult to optimize. The proposed method effectively searched the domain and solved difficult single-objective optimization problems. The developed algorithm was run for numerous classic test cases for both single and multi-objective problems. The results demonstrate that the method is robust, stable, and that the number of objective function evaluations is comparable to other optimization algorithms.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Alors que les activités anthropiques font basculer de nombreux écosystèmes vers des régimes fonctionnels différents, la résilience des systèmes socio-écologiques devient un problème pressant. Des acteurs locaux, impliqués dans une grande diversité de groupes — allant d’initiatives locales et indépendantes à de grandes institutions formelles — peuvent agir sur ces questions en collaborant au développement, à la promotion ou à l’implantation de pratiques plus en accord avec ce que l’environnement peut fournir. De ces collaborations répétées émergent des réseaux complexes, et il a été montré que la topologie de ces réseaux peut améliorer la résilience des systèmes socio-écologiques (SSÉ) auxquels ils participent. La topologie des réseaux d’acteurs favorisant la résilience de leur SSÉ est caractérisée par une combinaison de plusieurs facteurs : la structure doit être modulaire afin d’aider les différents groupes à développer et proposer des solutions à la fois plus innovantes (en réduisant l’homogénéisation du réseau), et plus proches de leurs intérêts propres ; elle doit être bien connectée et facilement synchronisable afin de faciliter les consensus, d’augmenter le capital social, ainsi que la capacité d’apprentissage ; enfin, elle doit être robuste, afin d’éviter que les deux premières caractéristiques ne souffrent du retrait volontaire ou de la mise à l’écart de certains acteurs. Ces caractéristiques, qui sont relativement intuitives à la fois conceptuellement et dans leur application mathématique, sont souvent employées séparément pour analyser les qualités structurales de réseaux d’acteurs empiriques. Cependant, certaines sont, par nature, incompatibles entre elles. Par exemple, le degré de modularité d’un réseau ne peut pas augmenter au même rythme que sa connectivité, et cette dernière ne peut pas être améliorée tout en améliorant sa robustesse. Cet obstacle rend difficile la création d’une mesure globale, car le niveau auquel le réseau des acteurs contribue à améliorer la résilience du SSÉ ne peut pas être la simple addition des caractéristiques citées, mais plutôt le résultat d’un compromis subtil entre celles-ci. Le travail présenté ici a pour objectifs (1), d’explorer les compromis entre ces caractéristiques ; (2) de proposer une mesure du degré auquel un réseau empirique d’acteurs contribue à la résilience de son SSÉ ; et (3) d’analyser un réseau empirique à la lumière, entre autres, de ces qualités structurales. Cette thèse s’articule autour d’une introduction et de quatre chapitres numérotés de 2 à 5. Le chapitre 2 est une revue de la littérature sur la résilience des SSÉ. Il identifie une série de caractéristiques structurales (ainsi que les mesures de réseaux qui leur correspondent) liées à l’amélioration de la résilience dans les SSÉ. Le chapitre 3 est une étude de cas sur la péninsule d’Eyre, une région rurale d’Australie-Méridionale où l’occupation du sol, ainsi que les changements climatiques, contribuent à l’érosion de la biodiversité. Pour cette étude de cas, des travaux de terrain ont été effectués en 2010 et 2011 durant lesquels une série d’entrevues a permis de créer une liste des acteurs de la cogestion de la biodiversité sur la péninsule. Les données collectées ont été utilisées pour le développement d’un questionnaire en ligne permettant de documenter les interactions entre ces acteurs. Ces deux étapes ont permis la reconstitution d’un réseau pondéré et dirigé de 129 acteurs individuels et 1180 relations. Le chapitre 4 décrit une méthodologie pour mesurer le degré auquel un réseau d’acteurs participe à la résilience du SSÉ dans lequel il est inclus. La méthode s’articule en deux étapes : premièrement, un algorithme d’optimisation (recuit simulé) est utilisé pour fabriquer un archétype semi-aléatoire correspondant à un compromis entre des niveaux élevés de modularité, de connectivité et de robustesse. Deuxièmement, un réseau empirique (comme celui de la péninsule d’Eyre) est comparé au réseau archétypique par le biais d’une mesure de distance structurelle. Plus la distance est courte, et plus le réseau empirique est proche de sa configuration optimale. La cinquième et dernier chapitre est une amélioration de l’algorithme de recuit simulé utilisé dans le chapitre 4. Comme il est d’usage pour ce genre d’algorithmes, le recuit simulé utilisé projetait les dimensions du problème multiobjectif dans une seule dimension (sous la forme d’une moyenne pondérée). Si cette technique donne de très bons résultats ponctuellement, elle n’autorise la production que d’une seule solution parmi la multitude de compromis possibles entre les différents objectifs. Afin de mieux explorer ces compromis, nous proposons un algorithme de recuit simulé multiobjectifs qui, plutôt que d’optimiser une seule solution, optimise une surface multidimensionnelle de solutions. Cette étude, qui se concentre sur la partie sociale des systèmes socio-écologiques, améliore notre compréhension des structures actorielles qui contribuent à la résilience des SSÉ. Elle montre que si certaines caractéristiques profitables à la résilience sont incompatibles (modularité et connectivité, ou — dans une moindre mesure — connectivité et robustesse), d’autres sont plus facilement conciliables (connectivité et synchronisabilité, ou — dans une moindre mesure — modularité et robustesse). Elle fournit également une méthode intuitive pour mesurer quantitativement des réseaux d’acteurs empiriques, et ouvre ainsi la voie vers, par exemple, des comparaisons d’études de cas, ou des suivis — dans le temps — de réseaux d’acteurs. De plus, cette thèse inclut une étude de cas qui fait la lumière sur l’importance de certains groupes institutionnels pour la coordination des collaborations et des échanges de connaissances entre des acteurs aux intérêts potentiellement divergents.
Resumo:
Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Alors que les activités anthropiques font basculer de nombreux écosystèmes vers des régimes fonctionnels différents, la résilience des systèmes socio-écologiques devient un problème pressant. Des acteurs locaux, impliqués dans une grande diversité de groupes — allant d’initiatives locales et indépendantes à de grandes institutions formelles — peuvent agir sur ces questions en collaborant au développement, à la promotion ou à l’implantation de pratiques plus en accord avec ce que l’environnement peut fournir. De ces collaborations répétées émergent des réseaux complexes, et il a été montré que la topologie de ces réseaux peut améliorer la résilience des systèmes socio-écologiques (SSÉ) auxquels ils participent. La topologie des réseaux d’acteurs favorisant la résilience de leur SSÉ est caractérisée par une combinaison de plusieurs facteurs : la structure doit être modulaire afin d’aider les différents groupes à développer et proposer des solutions à la fois plus innovantes (en réduisant l’homogénéisation du réseau), et plus proches de leurs intérêts propres ; elle doit être bien connectée et facilement synchronisable afin de faciliter les consensus, d’augmenter le capital social, ainsi que la capacité d’apprentissage ; enfin, elle doit être robuste, afin d’éviter que les deux premières caractéristiques ne souffrent du retrait volontaire ou de la mise à l’écart de certains acteurs. Ces caractéristiques, qui sont relativement intuitives à la fois conceptuellement et dans leur application mathématique, sont souvent employées séparément pour analyser les qualités structurales de réseaux d’acteurs empiriques. Cependant, certaines sont, par nature, incompatibles entre elles. Par exemple, le degré de modularité d’un réseau ne peut pas augmenter au même rythme que sa connectivité, et cette dernière ne peut pas être améliorée tout en améliorant sa robustesse. Cet obstacle rend difficile la création d’une mesure globale, car le niveau auquel le réseau des acteurs contribue à améliorer la résilience du SSÉ ne peut pas être la simple addition des caractéristiques citées, mais plutôt le résultat d’un compromis subtil entre celles-ci. Le travail présenté ici a pour objectifs (1), d’explorer les compromis entre ces caractéristiques ; (2) de proposer une mesure du degré auquel un réseau empirique d’acteurs contribue à la résilience de son SSÉ ; et (3) d’analyser un réseau empirique à la lumière, entre autres, de ces qualités structurales. Cette thèse s’articule autour d’une introduction et de quatre chapitres numérotés de 2 à 5. Le chapitre 2 est une revue de la littérature sur la résilience des SSÉ. Il identifie une série de caractéristiques structurales (ainsi que les mesures de réseaux qui leur correspondent) liées à l’amélioration de la résilience dans les SSÉ. Le chapitre 3 est une étude de cas sur la péninsule d’Eyre, une région rurale d’Australie-Méridionale où l’occupation du sol, ainsi que les changements climatiques, contribuent à l’érosion de la biodiversité. Pour cette étude de cas, des travaux de terrain ont été effectués en 2010 et 2011 durant lesquels une série d’entrevues a permis de créer une liste des acteurs de la cogestion de la biodiversité sur la péninsule. Les données collectées ont été utilisées pour le développement d’un questionnaire en ligne permettant de documenter les interactions entre ces acteurs. Ces deux étapes ont permis la reconstitution d’un réseau pondéré et dirigé de 129 acteurs individuels et 1180 relations. Le chapitre 4 décrit une méthodologie pour mesurer le degré auquel un réseau d’acteurs participe à la résilience du SSÉ dans lequel il est inclus. La méthode s’articule en deux étapes : premièrement, un algorithme d’optimisation (recuit simulé) est utilisé pour fabriquer un archétype semi-aléatoire correspondant à un compromis entre des niveaux élevés de modularité, de connectivité et de robustesse. Deuxièmement, un réseau empirique (comme celui de la péninsule d’Eyre) est comparé au réseau archétypique par le biais d’une mesure de distance structurelle. Plus la distance est courte, et plus le réseau empirique est proche de sa configuration optimale. La cinquième et dernier chapitre est une amélioration de l’algorithme de recuit simulé utilisé dans le chapitre 4. Comme il est d’usage pour ce genre d’algorithmes, le recuit simulé utilisé projetait les dimensions du problème multiobjectif dans une seule dimension (sous la forme d’une moyenne pondérée). Si cette technique donne de très bons résultats ponctuellement, elle n’autorise la production que d’une seule solution parmi la multitude de compromis possibles entre les différents objectifs. Afin de mieux explorer ces compromis, nous proposons un algorithme de recuit simulé multiobjectifs qui, plutôt que d’optimiser une seule solution, optimise une surface multidimensionnelle de solutions. Cette étude, qui se concentre sur la partie sociale des systèmes socio-écologiques, améliore notre compréhension des structures actorielles qui contribuent à la résilience des SSÉ. Elle montre que si certaines caractéristiques profitables à la résilience sont incompatibles (modularité et connectivité, ou — dans une moindre mesure — connectivité et robustesse), d’autres sont plus facilement conciliables (connectivité et synchronisabilité, ou — dans une moindre mesure — modularité et robustesse). Elle fournit également une méthode intuitive pour mesurer quantitativement des réseaux d’acteurs empiriques, et ouvre ainsi la voie vers, par exemple, des comparaisons d’études de cas, ou des suivis — dans le temps — de réseaux d’acteurs. De plus, cette thèse inclut une étude de cas qui fait la lumière sur l’importance de certains groupes institutionnels pour la coordination des collaborations et des échanges de connaissances entre des acteurs aux intérêts potentiellement divergents.
Resumo:
Dissertação de mest. em Engenharia de Sistemas e Computação - Área de Sistemas de Controlo, Faculdade de Ciências e Tecnologia, Univ.do Algarve, 2001
Resumo:
Production companies use raw materials to compose end-products. They often make different products with the same raw materials. In this research, the focus lies on the production of two end-products consisting of (partly) the same raw materials as cheap as possible. Each of the products has its own demand and quality requirements consisting of quadratic constraints. The minimization of the costs, given the quadratic constraints is a global optimization problem, which can be difficult because of possible local optima. Therefore, the multi modal character of the (bi-) blend problem is investigated. Standard optimization packages (solvers) in Matlab and GAMS were tested on their ability to solve the problem. In total 20 test cases were generated and taken from literature to test solvers on their effectiveness and efficiency to solve the problem. The research also gives insight in adjusting the quadratic constraints of the problem in order to make a robust problem formulation of the bi-blend problem.
Resumo:
The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.
Resumo:
Combinatorial optimization is a complex engineering subject. Although formulation often depends on the nature of problems that differs from their setup, design, constraints, and implications, establishing a unifying framework is essential. This dissertation investigates the unique features of three important optimization problems that can span from small-scale design automation to large-scale power system planning: (1) Feeder remote terminal unit (FRTU) planning strategy by considering the cybersecurity of secondary distribution network in electrical distribution grid, (2) physical-level synthesis for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration (VLSI) circuit. First, an optimization technique by cross entropy is proposed to handle FRTU deployment in primary network considering cybersecurity of secondary distribution network. While it is constrained by monetary budget on the number of deployed FRTUs, the proposed algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in different time horizons. Then, multi-scale optimization techniques are proposed for digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle the variation-aware lab-on-a-chip placement and routing co-design while satisfying all constraints, and considering contamination and defect. Last, the first fully polynomial time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing problem, which explores the theoretical view since the existing works are heuristics with no performance guarantee. The intellectual contribution of the proposed methods establishes a novel paradigm bridging the gaps between professional communities.
Resumo:
In rural and isolated areas without cellular coverage, Satellite Communication (SatCom) is the best candidate to complement terrestrial coverage. However, the main challenge for future generations of wireless networks will be to meet the growing demand for new services while dealing with the scarcity of frequency spectrum. As a result, it is critical to investigate more efficient methods of utilizing the limited bandwidth; and resource sharing is likely the only choice. The research community’s focus has recently shifted towards the interference management and exploitation paradigm to meet the increasing data traffic demands. In the Downlink (DL) and Feedspace (FS), LEO satellites with an on-board antenna array can offer service to numerous User Terminals (UTs) (VSAT or Handhelds) on-ground in FFR schemes by using cutting-edge digital beamforming techniques. Considering this setup, the adoption of an effective user scheduling approach is a critical aspect given the unusually high density of User terminals on the ground as compared to the on-board available satellite antennas. In this context, one possibility is that of exploiting clustering algorithms for scheduling in LEO MU-MIMO systems in which several users within the same group are simultaneously served by the satellite via Space Division Multiplexing (SDM), and then these different user groups are served in different time slots via Time Division Multiplexing (TDM). This thesis addresses this problem by defining a user scheduling problem as an optimization problem and discusses several algorithms to solve it. In particular, focusing on the FS and user service link (i.e., DL) of a single MB-LEO satellite operating below 6 GHz, the user scheduling problem in the Frequency Division Duplex (FDD) mode is addressed. The proposed State-of-the-Art scheduling approaches are based on graph theory. The proposed solution offers high performance in terms of per-user capacity, Sum-rate capacity, SINR, and Spectral Efficiency.