934 resultados para Modern and contemporary Physics
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.
Resumo:
What are the various forces influencing the role of the prison in late modern societies? What changes have there been in penality and use of the prison over the past 40 years that have led to the re-valorization of the prison? Using penal culture as a conceptual and theoretical vehicle, and Australia as a case study, this book analyses international developments in penality and imprisonment. Authored by some of Australia’s leading penal theorists, the book examines the historical and contemporary influences on the use of the prison, with analyses of colonialism, post colonialism, race, and what they term the ‘penal/colonial complex,’ in the construction of imprisonment rates and on the development of the phenomenon of hyperincarceration. The authors develop penal culture as an explanatory framework for continuity, change and difference in prisons and the nature of contested penal expansionism. The influence of transformative concepts such as ‘risk management’, ‘the therapeutic prison’, and ‘preventative detention’ are explored as aspects of penal culture. Processes of normalization, transmission and reproduction of penal culture are seen throughout the social realm. Comparative, contemporary and historical in its approach, the book provides a new analysis of penality in the 21st century.
Resumo:
This article investigates the role of “soft architecture” and interior effects—including window treatments, textiles, and electric lighting—in the physcial and social construction of the postwar domestic environment in the USA. In this period the American home became an increasingly visual and visible space, defined more by the view out and the view in than by traditional conditions of domestic enclosure. Popular how-to columns and home decoration articles offered homemakers a variety of mechanisms for sustaining the appearance and psychological comfort of the modern domestic setting. Examining a range of popular decorative strategies used to mediate residential picture windows and window walls, this study challenges the deep-seated cultural and disciplinary biases associated with both the design and study of domestic architecture and interiors. Drawing upon historical documents and contemporary theorizations of the interior, this paper argues for the agency of “soft architecture” in the domestication of modern residential architecture.
Resumo:
This study is an inquiry into three related topics in Aristotle’s psychology: the perception of seeing, the perception of past perception, and the perception of sleeping. Over the past decades, Aristotle’s account of the perception of perception has been studied in numerous articles and chapters of books. However, there is no monograph that attempts to give a comprehensive analysis of this account and to assess its relation and significance to Aristotle’s psychological theory in general as well as to other theories pertaining to the topics (e.g. theories of consciousness), be they ancient, medieval, modern, or contemporary. This study intends to fill this gap and to further the research into Aristotle’s philosophy and into the philosophy of mind. The present study is based on an accurate analysis of the sources, on their Platonic background, and on later interpretations within the commentary tradition up to the present. From a methodological point of view, this study represents systematically orientated research into the history of philosophy, in which special attention is paid to the philosophical problems inherent in the sources, to the distinctions drawn, and to the arguments put forward as well as to their philosophical assessment. In addition to contributing many new findings concerning the topics under discussion, this study shows that Aristotle’s account of the perception of perception substantially differs from many later theories of consciousness. This study also suggests that Aristotle be regarded as a consistent direct realist, not only in respect of sense perception, but also in respect of memory.
Resumo:
The co-doping effect of Zn and Pr impurities in the compound of composition Y1-xPrxBa2[Cu1-yZny](3)O7-delta with x = 0.1, x = 0.2 and 0 <= y <= 0.1 has been investigated by analyzing the results of electrical resistivity measurements. It is found that for Pr substitution at x = 0.1, there is a minimal influence on in-plane processes, thereby slightly affecting T-c and residual resistivity rho(0), but with the resistivity slope d rho/dT becoming large for the range of y from 0.03 to 0.06, leading to a larger depinning effect. For x = 0.2 a drastic change is observed whereby rho(0) becomes abnormally large, and d rho/dT becomes negative, implying totally pinned charge stripes and no depinning. The second observation therefore suggests that Pr substitution converts the overdoped system to an optimally doped system, leading to the universal superconductor-insulator transition.
Resumo:
TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
An internal target experiment at HIRFL-CSRm is planned for hadron physics, which focuses on hadron spectroscopy, polarized strangeness production and medium effect. A conceptual design of Hadron Physics Lanzhou Spectrometer (HPLUS) is discussed. Related computing framework involves event generation, simulation, reconstruction and final analysis. The R&D works on internal target facilities and sub-detectors are presented briefly.
Resumo:
The research activities at HIRFL-CSR cover the fields of the radio-biology, material science, atomic physics, and nuclear physics. This talk will mainly concentrate on the program on nuclear physics with the existing and planned experimental setups at HIRFL-CSR.
Resumo:
This thesis is a study of military memorials and commemoration with a focus on Anglo-American practice. The main question is: How has history defined military memorials and commemoration and how have they changed since the 19th century. In an effort to resolve this, the work examines both historic and contemporary forms of memorials and commemoration and establishes that remembrance in sites of collective memory has been influenced by politics, conflicts and religion. Much has been written since the Great War about remembrance and memorialization; however, there is no common lexicon throughout the literature. In order to better explain and understand this complex subject, the work includes an up-to-date literature review and for the first time, terminologies are properly explained and defined. Particular attention is placed on recognizing important military legacies, being familiar with spiritual influences and identifying classic and new signs of remembrance. The thesis contends that commemoration is composed of three key principles – recognition, respect and reflection – that are intractably linked to the fabric of memorials. It also argues that it is time for the study of memorials to come of age and proposes Memorialogy as an interdisciplinary field of study of memorials and associated commemorative practices. Moreover, a more modern, adaptive, General Classification System is presented as a means of identifying and re-defining memorials according to certain groups, types and forms. Lastly, this thesis examines how peacekeeping and peace support operations are being memorialized and how the American tragic events of 11 September 2001 and the war in Afghanistan have forever changed the nature of memorials and commemoration within Canada and elsewhere. This work goes beyond what has been studied and written about over the last century and provides a deeper level of analysis and a fresh approach to understanding the field of Memorialogy.
Resumo:
The musical period of Neoclassicism began in the 1920's, between the first and second world wars. It was initiated by French composers and eventually spread to other countries. One of the most important themes to emerge from the movement was to escape from the formless, rather emotional music of the Romantic era and instead, emphasize balance, order, objectivity and clarity in musical form. Many popular clarinet repertoires are enjoyed by performers and listeners because the music is enjoyable to play and easy to listen to. In particular, classically influenced clarinet music is quite interesting because it features musical elements from both the past and contemporary musical styles. For instance, some composers have integrated preexisting, more traditional styles of composition with lighter styles of modern culture such as popular music and Jazz. It is difficult to discover purely neoclassical clarinet repertoires even though many composers created their pieces during the neoclassical era. What we most commonly find are both neoclassical and non-neoclassical influences in compositions from that time period. Thus, I aim to trace the influence of neoclassicism in selected clarinet repertoires that exist today. It is my hope that increased awareness and knowledge about accessible clarinet music may encourage the general public to develop a deeper interest in a wider sphere of clarinet music, beyond what is considered popular today. The works performed and discussed in this dissertation are the following: (Recital I) Duo Concertante by Darius Milhaud; Sonata by Leonard Bernstein; Sonata for Two Clarinets by Francis Poulenc; Duos for Flute and Clarinet, Op. 34 by Robert Muczynski; Dance Preludes by Witold Lutoslawski, (Recital II) Sonatine by Arthur Honegger; Time pieces by Robert Muczynski; Suite for Clarinet, Violin and Piano by Darius Milhaud; Sonate for Clarinet, Flute and Piano by Maurice Emmanuel; Tarantelle for Flute, Clarinet and Piano, Op. 6 by Camille Saint-Saëns, (Recital III) Sonatina by Joseph Horovitz; Suite from L'histoire du Soldat for Clarinet, Violin and Piano by Igor Stravinsky; Contrasts for Clarinet, Violin and Piano by Béla Bartók The recitals that took place on December 1, 2012 and on April 25, 2013 were performed in the Ulrich Recital Hall of the Clarice Performing Arts Center in College Park, Maryland. The recital that took place on November 2, 2013 was performed at the Gildenhorn Recital Hall of the same performing arts center.
Resumo:
Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved
Resumo:
At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges
Resumo:
In this work, the non-Markovian decoherence is considered in two ways. Firstly, an effective Hamiltonian approach is demonstrated to investigate the decoherence of a quantum system in a non-Markovian environment, in which complete positivity of the reduced dynamics is achieved. This method uses the notion of an effective environment, that is a subsystem of the environment that causes the decoherence. Secondly, the evolution of the system and environment is decomposed, thus partially illuminating how they would interact given that memory effects are allowed. It should be noted that beam splitters and rotators are sufficient to explain this decomposition.
Resumo:
We have performed calculations of the solvation effects on a number of equilibrium constants in water using a recently proposed hybrid quantum classical scheme in which the liquid environment is modelled using classical solvent molecules and the solute electronic structure is computed using modern quantum chemical methods. The liquid phase space is sampled from a fully classical simulation. We find that solvation effects on both triazole tautomeric equilibrium constants and piperidinol conformational equilibrium constants can be interpreted in terms of subtle differences in the local environment which can be seen in probability densities and radial distribution functions. Lower level calculations were performed for comparison and we conclude that the solvation thermodynamics can be predicted from a good classical model of solvent and solute molecules, but the implicit models that we tried are less successful.