864 resultados para Mesoporous silica


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered mesoporous bioactive glasses (MBGs) with different compositions were prepared by using nonionic block copolymer surfactants as structure-directing agents through an evaporation-induced self-assembly process. Their in-vitro bioactivities were studied in detail by electron microscopy, Fourier-transform infrared spectroscopy, and inductively coupled plasma (ICP) atomic emission spectroscopy. The ICP element analysis results were further calculated in terms of the total consumption of Ca and P, Delta[Ca]/Delta[P] ratios, and ionic activity product (IP) of hydroxyapatite. Through the above analysis, it is clear that MBGs show a different structure-bioactivity correlation compared to conventional sol-gel-derivcd BGs. The in vitro bioactivity of MBGs is dependent on the Si/Ca ratio in the network when the other material parameters such as the mesostructure and texture properties (pore size, pore volume) are controlled. MBG 80S15C with relatively lower calcium content exhibits the best in vitro bioactivity, in contrast to conventional sol-gel-derived BGs where usually higher calcium percentage BGs (e.g. 60S35C) show better bioactivity. Calcination temperature is another important factor that influences the in vitro bioactivity. According to our results, MBGs calcined at 973 K may possess the best in vitro bioactivity. The influences of the composition and calcination temperature upon bioactivity are explained in terms of the unique structures of MBGs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfonic acid functionalised periodic mesoporous organosilicas (PrSO3 H-PMOs) with tunable hydrophobicity were synthesised via a surfactant-templating route, and characterised by porosimetry, TEM, XRD, XPS, inverse gas chromatography (IGC) and ammonia pulse chemisorption. IGC reveals that incorporation of ethyl or benzyl moieties into a mesoporous SBA-15 silica framework significantly increases the non-specific dispersive surface energy of adsorption for alkane adsorption, while decreasing the free energy of adsorption of methanol, reflecting increased surface hydrophobicity. The non-specific dispersive surface energy of adsorption of PMO-SO3H materials is strongly correlated with their activity towards palmitic acid esterification with methanol, demonstrating the power of IGC as an analytical tool for identifying promising solid acid catalysts for the esterification of free fatty acids. A new parameter [-ΔGCNP-P], defined as the per carbon difference in Gibbs free energy of adsorption between alkane and polar probe molecules, provides a simple predictor of surface hydrophobicity and corresponding catalyst activity in fatty acid esterification. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surfactant templating offers a simple route to synthesize high-surface area silicas with ordered, tunable mesopore architectures. The use of these materials as versatile catalyst supports for palladium nanoparticles has been explored in the aerobic selective oxidation (selox) of allylic alcohols under mild conditions. Families of Pd/mesoporous silicas, synthesized through incipient wetness impregnation of SBA-15, SBA-16, and KIT-6, have been characterized by using nitrogen porosimetry, CO chemisorption, diffuse reflection infrared Fourier transform spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and high-resolution TEM and benchmarked in liquid phase allylic alcohol selox against a Pd/amorphous SiO2 standard. The transition from amorphous to two-dimensional parallel and three-dimensional interpenetrating porous silica networks conferred significant selox rate enhancements associated with higher surface densities of active palladium oxide sites. Dissolved oxygen was essential for insitu stabilization of palladium oxide, and thus maintenance of high activity on-stream, whereas selectivity to the desired aldehyde selox product over competing hydrogenolysis pathways was directed by using palladium metal. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zirconium-containing periodic mesoporous organosilicas (Zr-PMOs) with varying framework organic content have been synthesized through a direct synthesis method. These materials display the excellent textural properties of the analogous inorganic solid acid Zr-SBA-15 material. However, the substitution of silica by organosilicon species provides a strong hydrophobic character. This substitution leads to meaningful differences in the environment surrounding the zirconium metal sites, leading the modification of the catalytic properties of these materials. Although lower metal incorporation is accomplished in the final materials, leading to a lower population of metal sites, hydrophobisation leads to an impressive beneficial effect on the intrinsic catalytic activity of the zirconium sites in biodiesel production by esterification/transesterification of free fatty acid -containing feedstock. Moreover, the catalytic activity of the highly hybridised materials is hardly affected in presence of large amounts of water, confirming their very good water-tolerance. This makes Zr-PMO materials interesting catalysts for biodiesel production from highly acidic water-containing feedstock. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of silica mesostructure upon the Pd-catalyzed selective oxidation of allylic alcohols has been investigated for amorphous and surfactant-templated SBA-15, SBA-16, and KIT-6 silicas. Significant rate enhancements can be achieved via mesopore introduction, most notably through the use of interconnected porous silica frameworks, reflecting both improved mass transport and increased palladium dispersion; catalytic activity decreases in the order Pd/KIT-6 ≈ Pd/SBA-16 > Pd/SBA-15 > Pd/SiO2. Evidence is presented that highly dispersed palladium oxide nanoparticles, not zerovalent palladium, are the catalytically active species. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly active mesoporous SO4/ZrO2/HMS (hexagonal mesoroporous silica) solid acid catalysts with tuneable sulphated zirconia (SZ) content have been prepared for the liquid phase isomerisation of α-pinene. The mesoporous HMS framework is preserved during the grafting process as evidenced by the X-ray diffraction (XRD) and porosimetry with all SO4/ZrO2/HMS materials possessing average pore-diameters ∼20 Å. XRD confirms the presence of a stabilized tetragonal phase of nanoparticulate ZrO2, with no evidence for zirconia phase separation or the formation of discrete crystallites, consistent with a uniform and highly dispersed SZ coating. The activity towards α-pinene isomerisation scales linearly with Zr loading, while the specific activities are an order of magnitude greater than attainable by conventional methodologies (∼1 versus 0.08 mol h−1 g Zr−1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple grafting protocol is reported which affords a ten-fold enhancement in acid site density of mesoporous sulfonic acid silicas compared to conventional syntheses, offering improved process efficiency and new opportunities for tailored supported solid acids in sustainable chemistry. This journal is

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrothermal saline promoted grafting of sulfonic acid groups onto SBA-15 and periodic mesoporous organic silica analogues affords solid acid catalysts with high acid site loadings (>2.5 mmol g-1 H+), ordered mesoporosity and tunable hydrophobicity. The resulting catalysts show excellent activity for fatty acid esterification and tripalmitin transesterification to methyl palmitate, with framework phenyl groups promoting fatty acid methyl esters production. (Chemical Equation Presented)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bio-oil has successfully been utilized to prepare carbon-silica composites (CSCs) from mesoporous silicas, such as SBA-15, MCM-41, KIT-6 and MMSBA frameworks. These CSCs comprise a thin film of carbon dispersed over the silica matrix and exhibit porosity similar to the parent silica. The surface properties of the resulting materials can be simply tuned by the variation of preparation temperatures leading to a continuum of functionalities ranging from polar hydroxyl rich surfaces to carbonaceous aromatic surfaces, as reflected in solid state NMR, XPS and DRIFT analysis. N2 porosimetry, TEM and SEM images demonstrate that the composites still possess similar ordered mesostructures to the parent silica sample. The modification mechanism is also proposed: silica samples are impregnated with bio-oils (generated from the pyrolysis of waste paper) until the pores are filled, followed by the carbonization at a series of temperatures. Increasing temperature leads to the formation of a carbonaceous layer over the silica surface. The complex mixture of compounds within the bio-oil (including those molecules containing alcohols, aliphatics, carbonyls and aromatics) gives rise to the functionality of the CSCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter provides a general overview of recent studies on catalytic conversion of fructose, glucose, and cellulose to platform chemicals over porous solid acid and base catalysts, including zeolites, ion-exchange resins, heteropoly acids, as well as structured carbon, silica, and metal oxide materials. Attention is focused on the dehydration of glucose and fructose to HMF, isomerization of glucose to fructose, hydrolysis of cellulose to sugar, and glycosidation of cellulose to alkyl glucosides. The correlation of porous structure, surface properties, and the strength or types of acid or base with the catalyst activity in these reactions is discussed in detail in this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel synthesis method for ordered mesoporous carbons is presented. The inverse replication of a silica template was achieved using the carbonization of sucrose within mesoporous KIT-6. Instead of liquid acid etching, as in classical nanocasting, a novel dry chlorine etching procedure for template removal is presented for the first time. The resultant ordered mesostructured carbon material outperforms carbons obtained by conventional hard templating with respect to high specific micro- and mesopore volumes (0.6 and 1.6 cm3 g−1, respectively), due to the presence of a hierarchical pore system. A high specific surface area of 1671 m2 g−1 was achieved, rendering this synthesis route a highly convenient method to produce ordered mesoporous carbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A family of copper oxide catalysts with loadings spanning 1–5 wt% were dispersed on a three dimensional, mesoporous TUD-1 silica through a hydrothermal, surfactant-free route employing tetraethylene glycol as a structure-directing agent. Their bulk and surface properties were characterized by N2 physisorption, XRD, DRUVS, EPR, TEM and Raman spectroscopy, confirming the expected mesoporous wormhole/foam support morphology and presence of well-dispersed CuO nanoparticles (∼5–20 nm). The catalytic performance of Cu/TUD-1 was evaluated as heterogeneous Fenton-like catalysts for Bisphenol A (BPA) oxidative degradation in the presence of H2O2 as a function of [H2O2], and CuO loading. Up to 90.4% of 100 ppm BPA removal was achieved over 2.5 wt% Cu/TUD-1 within 180 min, with negligible Cu leaching into the treated water.