971 resultados para Mesh elements
Resumo:
The accurate solution of 3D full-wave Method of Moments (MoM) on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretizations may not be fine enough to capture rapid spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates large number of solution variables and therefore requires an unnecessarily large matrix solution. In this work, a suitable refinement criterion for MoM based electromagnetic package-board extraction is proposed and the advantages of the adaptive strategy are demonstrated from both accuracy and speed perspectives.
Resumo:
In this paper, we consider a singularly perturbed boundary-value problem for fourth-order ordinary differential equation (ODE) whose highest-order derivative is multiplied by a small perturbation parameter. To solve this ODE, we transform the differential equation into a coupled system of two singularly perturbed ODEs. The classical central difference scheme is used to discretize the system of ODEs on a nonuniform mesh which is generated by equidistribution of a positive monitor function. We have shown that the proposed technique provides first-order accuracy independent of the perturbation parameter. Numerical experiments are provided to validate the theoretical results.
Resumo:
In this paper, a C-0 interior penalty method has been proposed and analyzed for distributed optimal control problems governed by the biharmonic operator. The state and adjoint variables are discretized using continuous piecewise quadratic finite elements while the control variable is discretized using piecewise constant approximations. A priori and a posteriori error estimates are derived for the state, adjoint and control variables under minimal regularity assumptions. Numerical results justify the theoretical results obtained. The a posteriori error estimators are useful in adaptive finite element approximation and the numerical results indicate that the sharp error estimators work efficiently in guiding the mesh refinement. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.
Resumo:
Flame particles are mathematical points comoving with a reacting isoscalar surface in a premixed flame. In this Rapid Communication, we investigate mean square pair separation of flame particles as a function of time from their positions tracked in two sets of direct numerical simulation solutions of H-2-air turbulent premixed flames with detailed chemistry. We find that, despite flame particles and fluid particles being very different concepts, a modified Batchelor's scaling of the form
Resumo:
This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.
Resumo:
3-D full-wave method of moments (MoM) based electromagnetic analysis is a popular means toward accurate solution of Maxwell's equations. The time and memory bottlenecks associated with such a solution have been addressed over the last two decades by linear complexity fast solver algorithms. However, the accurate solution of 3-D full-wave MoM on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretization may not be fine enough to capture spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates a large number of solution variables and therefore requires an unnecessarily large matrix solution. In this paper, different refinement criteria are studied in an adaptive mesh refinement platform. Consequently, the most suitable conductor mesh refinement criterion for MoM-based electromagnetic package-board extraction is identified and the advantages of this adaptive strategy are demonstrated from both accuracy and speed perspectives. The results are also compared with those of the recently reported integral equation-based h-refinement strategy. Finally, a new methodology to expedite each adaptive refinement pass is proposed.
Resumo:
A new stabilization scheme, based on a stochastic representation of the discretized field variables, is proposed with a view to reduce or even eliminate unphysical oscillations in the mesh-free numerical simulations of systems developing shocks or exhibiting localized bands of extreme deformation in the response. The origin of the stabilization scheme may be traced to nonlinear stochastic filtering and, consistent with a class of such filters, gain-based additive correction terms are applied to the simulated solution of the system, herein achieved through the element-free Galerkin method, in order to impose a set of constraints that help arresting the spurious oscillations. The method is numerically illustrated through its Applications to inviscid Burgers' equations, wherein shocks may develop as a result of intersections of the characteristics, and to a gradient plasticity model whose response is often characterized by a developing shear band as the external load is gradually increased. The potential of the method in stabilized yet accurate numerical simulations of such systems involving extreme gradient variations in the response is thus brought forth. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Structural variations of different Z pi-aromatic three-membered ring systems of main group elements, especially group 14 and 13 elements as compared to the classical description of cyclopropenyl cation has been reviewed in this article. The structures of heavier analogues as well as group 13 analogues of cyclopropenyl cation showed an emergence of dramatic structural patterns which do not conform, to the general norms of carbon chemistry. Isolobal analogies between the main group fragments have been efficiently used to explain the peculiarities observed in these three-membered ring systems.
Resumo:
Streamwise streaks, their lift-up and streak instability are integral to the bypass transition process. An experimental study has been carried out to find the effect of a mesh placed normal to the flow and at different wall-normal locations in the late stages of two transitional flows induced by free-stream turbulence (FST) and an isolated roughness element. The mesh causes an approximately 30% reduction in the free-stream velocity, and mild acceleration, irrespective of its wall-normal location. Interestingly, when located near the wall, the mesh suppresses several transitional events leading to transition delay over a large downstream distance. The transition delay is found to be mainly caused by suppression of the lift-up of the high-shear layer and its distortion, along with modification of the spanwise streaky structure to an orderly one. However, with the mesh well away from the wall, the lifted-up shear layer remains largely unaffected, and the downstream boundary layer velocity profile develops an overshoot which is found to follow a plane mixing layer type profile up to the free stream. Reynolds stresses, and the size and strength of vortices increase in this mixing layer region. This high-intensity disturbance can possibly enhance transition of the accelerated flow far downstream, although a reduction in streamwise turbulence intensity occurs over a short distance downstream of the mesh. However, the shape of the large-scale streamwise structure in the wall-normal plane is found to be more or less the same as that without the mesh.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRA) are emerging as embedded application processing units in computing platforms for Exascale computing. Such CGRAs are distributed memory multi- core compute elements on a chip that communicate over a Network-on-chip (NoC). Numerical Linear Algebra (NLA) kernels are key to several high performance computing applications. In this paper we propose a systematic methodology to obtain the specification of Compute Elements (CE) for such CGRAs. We analyze block Matrix Multiplication and block LU Decomposition algorithms in the context of a CGRA, and obtain theoretical bounds on communication requirements, and memory sizes for a CE. Support for high performance custom computations common to NLA kernels are met through custom function units (CFUs) in the CEs. We present results to justify the merits of such CFUs.
Resumo:
Aim: To develop a mesh meant to be mounted on a windowpane that will act as a barrier for dust, while allowing wind to pass freely. Materials and Methods: Two small metal meshes separated at 1 cm, connected to an electrostatic generator and holding opposite charges are used. A videographic analysis has been performed. Results: The charged bilayered mesh was able to prevent a large portion of dust from passing through. Conclusion: The device is a simple, economical, and reliable way of reducing the entry of dust into a room, easing the need for periodic cleaning, and thus creating a healthier environment for the inhabitants of the building. It also has potential space applications.
Resumo:
Bearing capacity factors, N-c, N-q, and N-gamma, for a conical footing are determined by using the lower and upper bound axisymmetric formulation of the limit analysis in combination with finite elements and optimization. These factors are obtained in a bound form for a wide range of the values of cone apex angle (beta) and phi with delta = 0, 0.5 phi, and phi. The bearing capacity factors for a perfectly rough (delta = phi) conical footing generally increase with a decrease in beta. On the contrary, for delta = 0 degrees, the factors N-c and N-q reduce gradually with a decrease in beta. For delta = 0 degrees, the factor N-gamma for phi >= 35 degrees becomes a minimum for beta approximate to 90 degrees. For delta = 0 degrees, N-gamma for phi <= 30 degrees, as in the case of delta = phi, generally reduces with an increase in beta. The failure and nodal velocity patterns are also examined. The results compare well with different numerical solutions and centrifuge tests' data available from the literature.
Resumo:
Availability of land for conventional air-insulated substations is becoming increasingly difficult not only in urban but also in semiurban areas. When the land made available is highly uneven, the associated technoeconomic factors favors the erection of substations on a steplike-formed ground surface and such constructions are in service for more than ten years in some parts of southern India. Noting that the literature on the performance of ground grids in such a construction is rather scarce, the present work was taken up. Evaluation of the performance of earthing elements in steplike ground forms the main goal of the present work. For the numerical evaluation, a suitable boundary-based methodology is employed. This method retains the classical Galerkin approach for the conductors, while the interfaces are replaced by equivalent fictitious surface sources defined over unstructured mesh. Details of the implementation of this numerical method, along with special measures to minimize the computation, are presented. The performance of basic earthing elements, such as the driven rod, counterpoise, and simple grids buried in steplike ground, are analyzed and compared with that for the case with uniform soil surface. It is shown that more than the earthing resistances, the step potentials can get significantly affected.
Resumo:
The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero-shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X-and Y-group for a particular Z-can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. (C) 2015 Wiley Periodicals, Inc.