949 resultados para Mechanical Attrition Treatment
Resumo:
Background: Motive-oriented therapeutic relationship (MOTR) was postulated to be a particularly helpful therapeutic ingredient in the early treatment phase of patients with personality disorders, in particular with borderline personality disorder (BPD). The present randomized controlled study using an add-on design is the first study to test this assumption in a 10-session general psychiatric treatment with patients presenting with BPD on symptom reduction and therapeutic alliance. Methods: A total of 85 patients were randomized. They were either allocated to a manual-based short variant of the general psychiatric management (GPM) treatment (in 10 sessions) or to the same treatment where MOTR was deliberately added to the treatment. Treatment attrition and integrity analyses yielded satisfactory results. Results: The results of the intent-to-treat analyses suggested a global efficacy of MOTR, in the sense of an additional reduction of general problems, i.e. symptoms, interpersonal and social problems (F 1, 73 = 7.25, p < 0.05). However, they also showed that MOTR did not yield an additional reduction of specific borderline symptoms. It was also shown that a stronger therapeutic alliance, as assessed by the therapist, developed in MOTR treatments compared to GPM (Z 55 = 0.99, p < 0.04). Conclusions: These results suggest that adding MOTR to psychiatric and psychotherapeutic treatments of BPD is promising. Moreover, the findings shed additional light on the perspective of shortening treatments for patients presenting with BPD.
Resumo:
The aim was to investigate the effect of mechanical pain stimulation at the lower back on hemodynamic and oxygenation changes in the prefrontal cortex (PFC) assessed by functional near-infrared spectroscopy (fNIRS) and on the partial pressure of end-tidal carbon dioxide ( PetCO 2) measured by capnography. 13 healthy subjects underwent three measurements (M) during pain stimulation using pressure pain threshold (PPT) at three locations, i.e., the processus spinosus at the level of L4 (M1) and the lumbar paravertebral muscles at the level of L1 on the left (M2) and the right (M3) side. Results showed that only in the M2 condition the pain stimulation elicited characteristic patterns consisting of (1) a fNIRS-derived decrease in oxy- and total hemoglobin concentration and tissue oxygen saturation, an increase in deoxy-hemoglobin concentration, (2) a decrease in the PetCO 2 response and (3) a decrease in coherence between fNIRS parameters and PetCO 2 responses in the respiratory frequency band (0.2-0.5 Hz). We discuss the comparison between M2 vs. M1 and M3, suggesting that the non-significant findings in the two latter measurements were most likely subject to effects of the different stimulated tissues, the stimulated locations and the stimulation order. We highlight that PetCO 2 is a crucial parameter for proper interpretation of fNIRS data in experimental protocols involving pain stimulation. Together, our data suggest that the combined fNIRS-capnography approach has potential for further development as pain monitoring method, such as for evaluating clinical pain treatment.
Resumo:
Reduced bone stock can result in fractures that mostly occur in the spine, distal radius, and proximal femur. In case of operative treatment, osteoporosis is associated with an increased failure rate. To estimate implant anchorage, mechanical methods seem to be promising to measure bone strength intraoperatively. It has been shown that the mechanical peak torque correlates with the local bone mineral density and screw failure load in hip, hindfoot, humerus, and spine in vitro. One device to measure mechanical peak torque is the DensiProbe (AO Research Institute, Davos, Switzerland). The device has shown its effectiveness in mechanical peak torque measurement in mechanical testing setups for the use in hip, hindfoot, and spine. In all studies, the correlation of mechanical torque measurement and local bone mineral density and screw failure load could be shown. It allows the surgeon to judge local bone strength intraoperatively directly at the region of interest and gives valuable information if additional augmentation is needed. We summarize methods of this new technique, its advantages and limitations, and give an overview of actual and possible future applications.
Resumo:
BACKGROUND AND AIM There is a lack of suitable in vitro models to evaluate various treatment modalities intending to remove subgingival bacterial biofilm. Consequently, the aims of this in vitro-study were: a) to establish a pocket model enabling mechanical removal of biofilm and b) to evaluate repeated non-surgical periodontal treatment with respect to biofilm removal and reformation, surface alterations, tooth hard-substance-loss, and attachment of periodontal ligament (PDL) fibroblasts. MATERIAL AND METHODS Standardized human dentin specimens were colonized by multi-species biofilms for 3.5 days and subsequently placed into artificially created pockets. Non-surgical periodontal treatment was performed as follows: a) hand-instrumentation with curettes (CUR), b) ultrasonication (US), c) subgingival air-polishing using erythritol (EAP) and d) subgingival air-polishing using erythritol combined with chlorhexidine digluconate (EAP-CHX). The reduction and recolonization of bacterial counts, surface roughness (Ra and Rz), the caused tooth substance-loss (thickness) as well as the attachment of PDL fibroblasts were evaluated and statistically analyzed by means of ANOVA with Post-Hoc LSD. RESULTS After 5 treatments, bacterial reduction in biofilms was highest when applying EAP-CHX (4 log10). The lowest reduction was found after CUR (2 log10). Additionally, substance-loss was the highest when using CUR (128±40 µm) in comparison with US (14±12 µm), EAP (6±7 µm) and EAP-CHX (11±10) µm). Surface was roughened when using CUR and US. Surfaces exposed to US and to EAP attracted the highest numbers of PDL fibroblasts. CONCLUSION The established biofilm model simulating a periodontal pocket combined with interchangeable placements of test specimens with multi-species biofilms enables the evaluation of different non-surgical treatment modalities on biofilm removal and surface alterations. Compared to hand instrumentation the application of ultrasonication and of air-polishing with erythritol prevents from substance-loss and results in a smooth surface with nearly no residual biofilm that promotes the reattachment of PDL fibroblasts.
Resumo:
Mechanical thrombectomy provides higher recanalization rates than intravenous or intra-arterial thrombolysis. Finally this has been shown to translate into improved clinical outcome in six multicentric randomized controlled trials. However, within cohorts the clinical outcomes may vary, depending on the endovascular techniques applied. Systems aiming mainly for thrombus fragmentation and lacking a protection against distal embolization have shown disappointing results when compared to recent stent-retriever studies or even to historical data on local arterial fibrinolysis. Procedure-related embolic events are usually graded as adverse events in interventional neuroradiology. In stroke, however, the clinical consequences of secondary emboli have so far mostly been neglected and attributed to progression of the stroke itself. We summarize the evolution of instruments and techniques for endovascular, image-guided, microneurosurgical recanalization in acute stroke, and discuss how to avoid procedure-related embolic complications.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
Clinical trials have shown a beneficial effect of mechanical thrombectomy in acute ischemic stroke patients treated within six up to even 12 h after symptom onset. This treatment was already performed in selected hospitals in Belgium before completion of the randomized controlled trials. Outcome data on these procedures in Belgium have not been published. We performed a retrospective multicenter study of all patients with acute ischemic stroke treated with mechanical endovascular therapy in four hospitals in Belgium. Clinical outcomes, as measured by the modified Rankin Scale (mRS), site of arterial occlusion, reperfusion and the association between these variables were studied. The study included 80 patients: 65 patients with an occlusion in the anterior circulation and 15 with an occlusion in the posterior circulation. Good functional outcome (GFO) rates, defined as mRS 0-2 at 90 days, were 42 % in all patients, 44 % in anterior circulation stroke and 34 % in posterior circulation stroke. Reperfusion was achieved in 78 % of patients; more (100 %) in patients with posterior compared to patients with anterior circulation stroke (72 %; p = 0.02). The rate of GFO was greater in patients with reperfusion versus patients in whom reperfusion was not achieved (adjusted OR 8.2, 95 % CI 2.0-34.2). Symptomatic intracerebral hemorrhage was documented in 5 % of all patients. Endovascular treatment with mechanical devices for acute ischemic stroke in Belgium results in GFO and reperfusion rates similar to recently published results in the endovascular-treated arms of randomized clinical trials. Rates of symptomatic intracranial hemorrhage are low and comparable to other cohort studies and clinical trials.
Resumo:
BACKGROUND AND PURPOSE Mechanical thrombectomy is beneficial for patients with acute ischemic stroke and a proximal anterior occlusion, but it is unclear if these results can be extrapolated to patients with an M2 occlusion. The purpose of this study was to examine the technical aspects, safety, and outcomes of mechanical thrombectomy with a stent retriever in patients with an isolated M2 occlusion who were included in 3 large multicenter prospective studies. MATERIALS AND METHODS We included patients from the Solitaire Flow Restoration Thrombectomy for Acute Revascularization (STAR), Solitaire With the Intention For Thrombectomy (SWIFT), and Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment (SWIFT PRIME) studies, 3 large multicenter prospective studies on thrombectomy for ischemic stroke. We compared outcomes and technical details of patients with an M2 with those with an M1 occlusion. All patients were treated with a stent retriever. Imaging data and outcomes were scored by an independent core laboratory. Successful reperfusion was defined as modified Thrombolysis in Cerebral Infarction score of 2b/3. RESULTS We included 50 patients with an M2 and 249 patients with an M1 occlusion. Patients with an M2 occlusion were older (mean age, 71 versus 67 years; P = .04) and had a lower NIHSS score (median, 13 versus 17; P < .001) compared with those with an M1 occlusion. Procedural time was nonsignificantly shorter in patients with an M2 occlusion (median, 29 versus 35 minutes; P = .41). The average number of passes with a stent retriever was also nonsignificantly lower in patients with an M2 occlusion (mean, 1.4 versus 1.7; P = .07). There were no significant differences in successful reperfusion (85% versus 82%, P = .82), symptomatic intracerebral hemorrhages (2% versus 2%, P = 1.0), device-related serious adverse events (6% versus 4%, P = .46), or modified Rankin Scale score 0-2 at follow-up (60% versus 56%, P = .64). CONCLUSIONS Endovascular reperfusion therapy appears to be feasible in selected patients with ischemic stroke and an M2 occlusion.
Resumo:
Aortic valve replacement (AVR) is the most frequently performed procedure in valve surgery. The controversy about the optimal choice of the prosthetic valve is as old as the technique itself. Currently there is no perfect valve substitute available. The main challenge is to choose between mechanical and biological prosthetic valves. Biological valves include pericardial (bovine, porcine or equine) and native porcine bioprostheses designed in stented or stentless versions. Homografts and pulmonary autografts are reserved for special indications and will not be discussed in detail in this review. We will focus on the decision making between artificial biological and mechanical prostheses, respectively. The first part of this article reviews guideline recommendations concerning the choice of aortic prostheses in different clinical situations while the second part is focused on novel strategies in the treatment of patients with aortic valve pathology.
Resumo:
Antimicrobial photodynamic therapy (PDT) has attracted much attention for the treatment of pathogenic biofilm associated with peridontitis and peri-implantitis. However, data from randomized controlled clinical studies (RCTs) are limited and, to some extent, controversial, making it difficult to provide appropriate recommendations. Therefore, the aims of the present study were (a) to provide an overview on the current evidence from RCTs evaluating the potential clinical benefit for the additional use of PDT to subgingival mechanical debridement (ie, scaling and root planing) alone in nonsurgical periodontal therapy; and (b) to provide clinical recommendations for the use of PDT in periodontal practice.
Resumo:
BACKGROUND AND PURPOSE Five randomized controlled trials have consistently shown that mechanical thrombectomy (MT) in addition to best medical treatment (±intravenous tissue-type plasminogen activator) improves outcome after acute ischemic stroke in patients with large artery anterior circulation stroke. Whether direct MT is equally effective as combined intravenous thrombolysis with MT (ie, bridging thrombolysis) remains unclear. METHODS We retrospectively compared clinical and radiological outcomes in 167 bridging patients with 255 patients receiving direct MT because of large artery anterior circulation stroke. We matched all patients from the direct MT group who would have qualified for intravenous tissue-type plasminogen activator with controls from the bridging group, using multivariate and propensity score analyses. Functional independence was defined as modified Rankin Scale score of 0 to 2. RESULTS From February 2009 to August 2014, 40 patients from the direct MT group would have qualified for bridging thrombolysis but were treated with MT only. Clinical and radiological characteristics did not differ from the bridging cohort, except for higher rates of hypercholesterolemia (P=0.019), coronary heart disease (P=0.039), and shorter intervals from symptom onset to endovascular intervention (P=0.01) in the direct MT group. Functional independence, mortality, and intracerebral hemorrhage rates did not differ (P>0.1). After multivariate matching analysis outcome in both groups did not differ, except for lower rates of asymptomatic intracerebral hemorrhage (P=0.023) and lower mortality (P=0.007) in the direct MT group. CONCLUSIONS In patients with large anterior circulation stroke, direct mechanical intervention seems to be equally effective as bridging thrombolysis. A randomized trial comparing direct MT with bridging therapy is warranted.
Resumo:
BACKGROUND Preterm infants having immature lungs often require respiratory support, potentially leading to bronchopulmonary dysplasia (BPD). Conventional BPD rodent models based on mechanical ventilation (MV) present outcome measured at the end of the ventilation period. A reversible intubation and ventilation model in newborn rats recently allowed discovering that different sets of genes modified their expression related to time after MV. In a newborn rat model, the expression profile 48 h after MV was analyzed with gene arrays to detect potentially interesting candidates with an impact on BPD development. METHODS Rat pups were injected P4-5 with 2 mg/kg lipopolysaccharide (LPS). One day later, MV with 21 or 60% oxygen was applied during 6 h. Animals were sacrified 48 h after end of ventilation. Affymetrix gene arrays assessed the total gene expression profile in lung tissue. RESULTS In fully treated animals (LPS + MV + 60% O(2)) vs. controls, 271 genes changed expression significantly. All modified genes could be classified in six pathways: tissue remodeling/wound repair, immune system and inflammatory response, hematopoiesis, vasodilatation, and oxidative stress. Major alterations were found in the MMP and complement system. CONCLUSION MMPs and complement factors play a central role in several of the pathways identified and may represent interesting targets for BPD treatment/prevention.Bronchopulmonary dysplasia (BPD) is a chronic lung disease occurring in ~30% of preterm infants born less than 30 wk of gestation (1). Its main risk factors include lung immaturity due to preterm delivery, mechanical ventilation (MV), oxygen toxicity, chorioamnionitis, and sepsis. The main feature is an arrest of alveolar and capillary formation (2). Models trying to decipher genes involved in the pathophysiology of BPD are mainly based on MV and oxygen application to young mammals with immature lungs of different species (3). In newborn rodent models, analyses of lung structure and gene and protein expression are performed for practical reasons directly at the end of MV (4,5,6). However, later appearing changes of gene expression might also have an impact on lung development and the evolution towards BPD and cannot be discovered by such models. Recently, we developed a newborn rat model of MV using an atraumatic (orotracheal) intubation technique that allows the weaning of the newborn animal off anesthesia and MV, the extubation to spontaneous breathing, and therefore allows the evaluation of effects of MV after a ventilation-free period of recovery (7). Indeed, applying this concept of atraumatic intubation by direct laryngoscopy, we recently were able to show significant differences between gene expression changes appearing directly after MV compared to those measured after a ventilation-free interval of 48 h. Immediately after MV, inflammation-related genes showed a transitory modified expression, while another set of more structurally related genes changed their expression only after a delay of 2 d (7). Lung structure, analyzed by conventional 2D histology and also by 3D reconstruction using synchrotron x-ray tomographic microscopy revealed, 48 h after end of MV, a reduced complexity of lung architecture compared to the nonventilated rat lungs, similar to the typical findings in BPD. To extend these observations about late gene expression modifications, we performed with a similar model a full gene expression profile of lung tissue 48 h after the end of MV with either room air or 60% oxygen. Essentially, we measured changes in the expression of genes related to the MMPs and complement system which played a role in many of the six identified mostly affected pathways.
Resumo:
Morphine is the most common clinical choice in the management of severe pain. Although the molecular mechanisms of morphine have already been characterized, the cerebral circuits by which it attenuates the sensation of pain have not yet been studied in humans. The objective of this two-arm (morphine versus placebo), between-subjects study was to examine whether morphine affects pain via pain-related cortical circuits, but also via reward regions that relate to the motivational state, as well as prefrontal regions that relate to vigilance as a result of morphine's sedative effects. Cortical activity was measured by the blood-oxygen-level-dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). ^ The novelty of this study is at three levels: (i) to develop a methodology that will assess the average BOLD signal across subjects for the pain, reward, and vigilance cortical systems; (ii) to examine whether the reward and/or sedative effects of morphine are contributing factors to cortical regions associated with the motivational state and vigilance; and (iii) to propose a neuroanatomical model related to the opioid-sensitive effects of reward and sedation as a function of cortical activity related to pain in an effort to assess future analgesics. ^ Consistent with our hypotheses, our findings showed that the decrease in total pain-related volume activated between the post- and the pre-treatment morphine group was about 78%, while the post-treatment placebo group displayed only a 5% decrease when compared to pre-treatment levels of activation. The volume increase in reward regions was 451% in the post-treatment compared to the pre-treatment morphine condition. Finally, the volumetric decrease in vigilance regions was 63% in the posttreatment compared to the pre-treatment morphine condition. ^ These findings imply that changes in the blood flow of the reward and vigilance regions may be contributing factors in producing the analgesic effect under morphine administration. Future studies need to replicate this study in a higher resolution fMRI environment and to assess the proposed neuroanatomical model in patient populations. The necessity of pain research is apparent, since pain cuts across different diseases especially chronic ones, and thus, is recognized as a vital public health developing area. ^
Resumo:
Patients living with a spinal cord injury (SCI) often develop chronic neuropathic pain (CNP). Unfortunately, the clinically approved, current standard of treatment, gabapentin, only provides temporary pain relief. This treatment can cause numerous adverse side effects that negatively affect the daily lives of SCI patients. There is a great need for alternative, effective treatments for SCI-dependent CNP. Minocycline, an FDA-approved antibiotic, has been widely prescribed for the treatment of acne for several decades. However, recent studies demonstrate that minocycline has neuroprotective properties in several pre-clinical rodent models of CNS trauma and disease. Pre-clinical studies also show that short-term minocycline treatment can prevent the onset of CNP when delivered during the acute stage of SCI and can also transiently attenuate established CNP when delivered briefly during the chronic stage of SCI. However, the potential to abolish or attenuate CNP via long-term administration of minocycline after SCI is unknown. The purpose of this study was to investigate the potential efficacy and safety of long-term administration of minocycline to abolish or attenuate CNP following SCI. A severe spinal contusion injury was administered on adult, male, Sprague-Dawley rats. At day 29 post-injury, I initiated a three-week treatment regimen of daily administration with minocycline (50 mg/kg), gabapentin (50 mg/kg) or saline. The minocycline treatment group demonstrated a significant reduction in below-level mechanical allodynia and above- level hyperalgesia while on their treatment regimen. After a ten-day washout period of minocycline, the animals continued to demonstrate a significant reduction in below-level mechanical allodynia and above-level hyperalgesia. However, minocycline-treated animals exhibited abnormal weight gain and hepatotoxicity compared to gapabentin-treated or vehicle-treated subjects.The results support previous findings that minocycline can attenuate CNP after SCI and suggested that minocycline can also attenuate CNP via long-term delivery of minocycline after SCI (36). The data also suggested that minocycline had a lasting effect at reducing pain symptoms. However, the adverse side effects of long-term use of minocycline should not be ignored in the rodent model. Gabapentin treatment caused a significant decrease in below-level mechanical allodynia and below-level hyperalgesia during the treatment regimen. Because gabapentin treatment has an analgesic effect at the concentration I administered, the results were expected. However, I also found that gabapentin-treated animals demonstrated a sustained reduction in pain ten days after treatment withdrawal. This result was unexpected because gabapentin has a short half-life of 1.7 hours in rodents and previous studies have demonstrated that pre-drug pain levels return shortly after withdrawal of treatment. Additionally, the gabapentin-treated animals demonstrated a significant and sustained increase in rearing events compared with all other treatment groups which suggested that gabapentin treatment was not only capable of reducing pain long-term but may also significantly improve trunk stability or improve motor function recovery.
Resumo:
Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.