992 resultados para Materials - Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorption has been considered as an efficient method for the treatment of dye effluents, but properdisposal of the spent adsorbents is still a challenge. This work attempts to provide a facile methodto reutilize the spent Mg/Al layered double hydroxide (Mg/Al-LDH) after the adsorption of orange II(OII). Herein, the spent hybrid was carbonized under the protection of nitrogen, and then washedwith acid to obtain porous carbon materials. Thermogravimetric analysis results suggested that thecarbonization could be well achieved above 600◦C, as mass loss of the spent hybrid gradually stabilized. Therefore, the carbonization process was carried out at 600, 800, and 1000 ◦C, respectively. Scanning electron microscope showed that the obtained carbon materials possessed a crooked flaky morphology. Nitrogen adsorption–desorption results showed that the carbon materials had large BET surface area and pore volume, e.g., 1426 m2/g and 1.67 cm3/g for the sample carbonized at 800 ◦C. Moreover, the pore structure and surface chemistry compositions were tunable, as they were sensitive to the temperature. Toluene adsorption results demonstrated that the carbon materials had high efficiency in toluene removal. This work provided a facile approach for synthesizing porous carbon materials using spent Mg/Al-LDH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a sequel to the work published by the first and third authors[l] on stiffened laminated shells of revolution made of unimodular materials (materials having identical properties in tension and compression). A finite element analysis of laminated bimodulus composite thin shells of revolution, reinforced by laminated bimodulus composite stiffeners is reported herein. A 48 dot doubly curved quadrilateral laminated anisotropic shell of revolution finite element and it's two compatible 16 dof stiffener finite elements namely: (i) a laminated anisotropic parallel circle stiffener element (PCSE) and (ii) a laminated anisotropic meridional stiffener element (MSE) have been used iteratively. The constitutive relationship of each layer is assumed to depend on whether the fiberdirection strain is tensile or compressive. The true state of strain or stress is realized when the locations of the neutral surfaces in the shell and the stiffeners remain unaltered (to a specified accuracy) between two successive iterations. The solutions for static loading of a stiffened plate, a stiffened cylindrical shell. and a stiffened spherical shell, all made of bimodulus composite materials, have been presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To identify the efficacy of short message service (SMS) reminders in health care appointment attendance. Materials and Methods A systematic review was undertaken to identify studies published between 2005 and 2015 that compared the attendance rates of patients receiving SMS reminders compared to patients not receiving a reminder. Each article was examined for information regarding the study design, sample size, population demographics and intervention methods. A meta-analysis was used to calculate a pooled estimate odds ratio. Results Twenty-eight (28) studies were included in the review, including 13 (46%) randomized controlled trials. The pooled odds ratio of the randomized control trials was 1.62 (1.35 – 1.94). Half of the studies reviewed sent the reminder within 48 hour prior to the appointment time, yet no significant subgroups differences with respect to participant age, SMS timing, rate or type, setting or specialty was detectable. Discussion All studies, except one with a small sample size, demonstrated a positive OR, indicating SMS reminders were an effective means of improving appointment attendance. There was no significant difference in OR when controlling for when the SMS was sent, the frequency of the reminders or the content of the reminder. Conclusion SMS appointment reminders are an effective and operative method in improving appointment attendance in a health care setting and this effectiveness has improved over the past five years. Further research is required to identify the optimal SMS reminder timing and frequency, specifically in relation to the length of time since the appointment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a uniform flow of any nature is interrupted, the readjustment of the flow results in concentrations and rare-factions, so that the peak value of the flow parameter will be higher than that which an elementary computation would suggest. When stress flow in a structure is interrupted, there are stress concentrations. These are generally localized and often large, in relation to the values indicated by simple equilibrium calculations. With the advent of the industrial revolution, dynamic and repeated loading of materials had become commonplace in engine parts and fast moving vehicles of locomotion. This led to serious fatigue failures arising from stress concentrations. Also, many metal forming processes, fabrication techniques and weak-link type safety systems benefit substantially from the intelligent use or avoidance, as appropriate, of stress concentrations. As a result, in the last 80 years, the study and and evaluation of stress concentrations has been a primary objective in the study of solid mechanics. Exact mathematical analysis of stress concentrations in finite bodies presents considerable difficulty for all but a few problems of infinite fields, concentric annuli and the like, treated under the presumption of small deformation, linear elasticity. A whole series of techniques have been developed to deal with different classes of shapes and domains, causes and sources of concentration, material behaviour, phenomenological formulation, etc. These include real and complex functions, conformal mapping, transform techniques, integral equations, finite differences and relaxation, and, more recently, the finite element methods. With the advent of large high speed computers, development of finite element concepts and a good understanding of functional analysis, it is now, in principle, possible to obtain with economy satisfactory solutions to a whole range of concentration problems by intelligently combining theory and computer application. An example is the hybridization of continuum concepts with computer based finite element formulations. This new situation also makes possible a more direct approach to the problem of design which is the primary purpose of most engineering analyses. The trend would appear to be clear: the computer will shape the theory, analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetric rolling of commercially pure magnesium was carried out at three different temperatures: room temperature, 200 degrees C and 350 degrees C. Systematic analysis of microstructures, grain size distributions, texture and misorientation distributions were performed using electron backscattered diffraction in a field emission gun scanning electron microscope. The results were compared with conventional (symmetric) rolling carried out under the same conditions of temperature and strain rate. Simulations of deformation texture evolution were performed using the viscoplastic self-consistent polycrystal plasticity model. The main trends of texture evolution are faithfully reproduced by the simulations for the tests at room temperature. The deviations that appear for the textures obtained at high temperature can be explained by the occurrence of dynamic recrystallization. Finally, the mechanisms of texture evolution in magnesium during asymmetric and symmetric rolling are explained with the help of ideal orientations, grain velocity fields and divergence maps displayed in orientation space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimensional analysis using π-theorem is applied to the variables associated with plastic deformation. The dimensionless groups thus obtained are then related and rewritten to obtain the constitutive equation. The constants in the constitutive equation are obtained using published flow stress data for carbon steels. The validity of the constitutive equation is tested for steels with up to 1.54 wt%C at temperatures: 850–1200 °C and strain rates: 6 × 10−6–2 × 10−2 s−1. The calculated flow stress agrees favorably with experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The constitutive model for a magnetostrictive material and its effect on the structural response is presented in this article. The example of magnetostrictive material considered is the TERFENOL-D. As like the piezoelectric material, this material has two constitutive laws, one of which is the sensing law and the other is the actuation law, both of which are highly coupled and non-linear. For the purpose of analysis, the constitutive laws can be characterized as coupled or uncoupled and linear or non linear. Coupled model is studied without assuming any explicit direct relationship with magnetic field. In the linear coupled model, which is assumed to preserve the magnetic flux line continuity, the elastic modulus, the permeability and magneto-elastic constant are assumed as constant. In the nonlinear-coupled model, the nonlinearity is decoupled and solved separately for the magnetic domain and the mechanical domain using two nonlinear curves, namely the stress vs. strain curve and the magnetic flux density vs. magnetic field curve. This is performed by two different methods. In the first, the magnetic flux density is computed iteratively, while in the second, the artificial neural network is used, where in the trained network will give the necessary strain and magnetic flux density for a given magnetic field and stress level. The effect of nonlinearity is demonstrated on a simple magnetostrictive rod.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses reliability issues in torsional MEMS varactor. Self-actuation due to high ac signals is analyzed, and solutions are proposed. The mode of failure at high actuation voltages is analyzed and established through experiments. Issues like stiction due to high voltages and effect of high residual stress are studied experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical solution has been obtained for the state of stress in a rectangular plate under a pair of symmetrically placed rigid indenters. The stress distributions along the two central axes have been calculated for a square plate assuming the pressure distribution under the indenters as uniform, parabolic and one resulting from 'constant displacement' on a semiinfinite boundary, for different ratios of indenter-width to side of square. The results are compared with those of photoelastic analysis of Berenbaum and Brodie and the validity of the solution is discussed. The solution has been extended to orthotropic materials and numerical results for one type of coal are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new stress-strain law, which is a three parameter representation of stress in terms of strain has been proposed for the matrix displacement analysis of structures made of non-hookean materials. This formula has been utilized to study three typical problems. These studies brought out the effectiveness and suitability of this law for matrix displacement analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CeO2-SnO2 solid solution has been reported to possess high oxygen storage/release property which possibly originates from local structural distortion. We have performed first-principles based density functional calculations of Ce1-xSnxO2 structure (x=0, 0.25, 0.5, 1) to understand its structural stability in fluorite in comparison to rutile structure of the other end-member SnO2, and studied the local structural distortion induced by the dopant Sn ion. Analysis of relative energies of fluorite and rutile phases of CeO2, SnO2, and Ce1-xSnxO2 indicates that fluorite structure is the most stable for Ce1-xSnxO2 solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO2 in fluorite structure is highly unstable while CeO2 in rutile structure is only weakly unstable. Thus, Sn in Ce1-xSnxO2-fluorite structure is associated with high local structural distortion whereas Ce in Ce1-xSnxO2-rutile structure, if formed, will show only marginal local distortion. Determination of M-O (M=Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce1-xSnxO2 show that local coordination of these cations changes from ideal eightfold coordination expected of fluorite lattice to 4+4 coordination, leading to generation of long and short Ce-O and Sn-O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence similar to 1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce1-xSnxO2 solid solution. (C) 2010 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stone-Wales (SW) defects, analogous to dislocations in crystals, play an important role in mechanical behavior of sp(2)-bonded carbon based materials. Here, we show using first-principles calculations that a marked anisotropy in the interaction among the SW defects has interesting consequences when such defects are present near the edges of a graphene nanoribbon: depending on their orientation with respect to edge, they result in compressive or tensile stress, and the former is responsible to depression or warping of the graphene nanoribbon. Such warping results in delocalization of electrons in the defect states.