935 resultados para Magnetite. Polyol. Nanoparticles. Superparamagnetic and thermal decomposition
Resumo:
Estudos termogravimétricos e calorimétricos diferenciais para ditiocarbamatos de NH4+, Na+, Zn2+, Cd2+ e Pb2+, derivados de aminas cíclicas contendo nitrogênio como heteroátomos, foram realizados em atmosferas de ar e nitrogênio, para avaliar a influência da tensão angular dos anéis na decomposição térmica destes compostos, em relação à formação de tiocianatos metálicos como via de decomposição. Os intemediários formados foram caracterizados por difração de raios-X, tendo sido encontrados oxissulfatos de Zn2+, Cd2+ e Pb2+, sob atmosfera de ar, o que sugere a decomposição térmica nestas condições como via sintética para estes compostos. Os produtos de decomposição final obtidos foram sulfetos metálicos sob nitrogênio e óxidos dos metais de transição e sulfato de sódio sob ar. Entalpias de fusão são também descritas, com base nos resultados de DSC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this present work, barium ion was reacted with different ligands which are 5,7-dibromo, 5,7-dichloro, 7-iodo and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring and the obtained compounds were as follows: (I) Ba[(C9H4ONBr2)(2)].1.5H(2)O; (II) Ba[(C9H4ONCl2)(OH)]. 1H(2)O; (III) Ba[(C9H5ONI)(2)]. 1H(2)O and (IV) Ba[(C9H4ONICl)(2)]. 5H(2)O, respectively. The compounds were characterized by elemental analysis, infrared absorption spectrum (IR), inductively coupled plasma spectrometry (ICP), simultaneous thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimeter (DSC).The final residue of the thermal decomposition was characterized as orthorhombic BaBr2 from (I); the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and cubic BaO and the final residue, as a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 (II); the intermediate residue, as orthorhombic BaCO3 and as a final residue, a mixture of cubic and tetragonal BaO from (III); and the intermediate residue, as a mixture of orthorhombic BaCO3 and BaCl2 and as a final residue, a mixture of cubic and tetragonal BaO and orthorhombic BaCl2 from (IV).
Resumo:
Crystalline PbTiO3 was obtained through the thermal decomposition of 8-hydroxyquinolinate of lead(II) and that of titanium(IV), which was monitored by TG/DTG/DTA under different atmospheric conditions and with varying heating rates. The compound was prepared from adding 8-hydroxyquinoline solution in the solution of metallic ions Pb(II):Ti(IV) (1:1) Linder constant stirring at 3degreesC, having the pH adjusted to 10. The results of these investigations show that different thermal behavior related to the precursor occurred and also the consequent formation of residues which have different crystallinities. No carbonate residues from the thermal decomposition could be determined by XRD and IR. Only PbTiO3 was observed and confirmed by DSC at 470degreesC, temperature lower than the tetragonal-cubic transition.
Resumo:
The thermal behavior of simple and mixed pyrazolyl complexes [PdCl2(phmPz)(2)] (1),[Pd(N-3)(2)(phmPz)(2)] (2), [Pd(SCN)(2)(phmPz)(2)] (3), and [Pd(N-3)(SCN)(phmPz)(2)] (4) (phmPz: 1-phenyl-3-methylpyrazole) has been investigated by means of thermogravimetry (TG) and differential thermal analysis (DTA). From the initial decomposition temperatures, the thermal stability of the complexes can be ordered in the sequence: 4 < 2 < 3 < 1. The final products of the thermal decompositions were characterized as metallic palladium (Pd-0). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Samples of commercial alkyd resin varnish were spread in a film form on slides, dried at room temperature and exposed to solar radiation from one day up to seven months.Thermogravimetric measurements have been done. Based on the TG data, the Flynn-Wall isoconversional method was applied. The activation energy varied between 176-154 kJ mol(-1) and logA was between 15.5-12.9 min(-1) for A, B and C samples at 95% confidence level.
Resumo:
A structural study of the thermal evolution of Ni0.69Cr0.31(OH)(2)(CO3)(0.155)(.)nH(2)O into NiO and tetragonal NiCr2O4 is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr-III-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.
Resumo:
By close control of experimental variables affecting precipitation, solid-state compounds of the type Th(OH)(m)L4-m.nH(2)O, where L stands for 4-methoxy-benzylidenepyruvate, cinnamylidenepyruvate or 4-dimethylaminocinnamylidene-pyruvate; m=0 to 3 and n=0.5-3 were isolated. Chemical analysis, TG, DTG, DSC and X-ray powder diffractometry have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. In all cases, hydration water is slowly lost between 30 and 160degreesC; a continuous, slow rate, mass loss is observed thereafter and beyond 280-400degreesC the rate of decomposition/oxidation increased rapidly, to give ThO2 as the final product, beginning at 412-510degreesC. The results associated with the hydroxo-compounds indicate that the loss of constitution water (OH ions) and the decomposition / oxidation of the organic moieties occur as simultaneous process.
Resumo:
The thermal behavior and non-isothermal kinetics of thermal decomposition of three different kinds of composting of the USR like: stack with drilled PVC tubes (ST), revolved stack (SR) and stack with material of structure (SM), from the usine of composing of Araraquara city, São Paulo state, Brazil, within a period of 132 days of composting were studied.Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the cellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated from that process. Due to that behavior, the cellulosic fraction decomposition could be kinetically evaluated through non-isothermal methods of analysis.The values obtained were: average activation energy, E-a=248, 257 and 259 kJ mol(-1) and pre-exponential factor, logA=21.4, 22.5, 22.7 min(-1), to the ST, SR and SM, respectively.From E-a and logA values and DSC curves, Malek procedure could be applied, suggesting that the SB (Sestak-Berggren) kinetic model is the appropriated one to the first thermal decomposition step.
Resumo:
M(CO)(4)(N-N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)(4)(N-N)(CuCl)], M = W, Mo; N-N = 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)(4)(N-N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)(4)(N-N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four m ( CO) band patterns of the precursors. The u.v.-vis. spectral data for precursors and products showed bands associated with pi --> pi* (nitrogen ligands), d-->d (intrametal), as well as MLCT d-->pi* (nitrogen ligands) and MLCT d --> pi*(CO) transitions. The [M(CO)(4)(N-N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)(4)(N-N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X- ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.
Resumo:
Magnesium ion was reacted with 5,7-dibromo-, 5,7-dichloro-, 7-iodo- and 5-chloro-7-iodo-8-hydroxyquinoline, in acetone/ammonium hydroxide medium under constant stirring to obtain (I) Mg[(C9H4ONBr2)(2)].2H(2)O; (II) Mg[(C9H4ONCl2)(2)].3H(2)O; (III) Mg[(C9H5ONI)(2)].2H(2)O and (IV) Mg[(C9H4ONICl)(2)].2.5H(2)O complexes. The compounds were characterized by elemental analysis, IR spectra, ICP, TG-DTA and DSC.Through thermal decomposition residues were obtained and characterized, by X-ray diffractometry, as a mixture of hexagonal MgBr2 and cubic MgO to the (I) compound at 850degreesC; cubic MgO to the (II), (III) and (IV) compounds at 750, 800 and 700degreesC, respectively.
Resumo:
Non-isothermal kinetic parameters regarding to the thermal decomposition of the ligninocellulosic fraction present in compost from urban solid residues (USR) obtained through stack covered (SC) with composted material, comes from the usine in composing of Araraquara city, São Paulo state, Brazil, and from stack containing academic restaurant organic solid residues (SAR). The samples were periodically revolved round 132 days of composting.Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the lignocellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated during that process. The lignocellulosic fraction decomposition, between 200 and 400degreesC, were kinetically evaluated through non-isothermal methods of analysis.By using the Flynn-Wall and Ozawa isoconversional method, the medium activation energy, E-a, and pre-exponential factor, IgA, were 283.0+/-4.6, 257.6+/-1.3 U mol(-1) and 25.4+/-0.8, 23.2+/-0.2 min(-1),to the SC and SAR, respectively, at 95% confidence level.From E-a, and IgA values and DSC curves, Malek procedure could be applied, Suggesting that the SB (Sestik-Berggren) kinetic model is suitable for the first thermal decomposition step.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
Samples of water based commercial acrylic resin paints were spread in a film form on slides, dried at room temperature and exposed to solar radiation for up to eight months.The characterization and quantification of resins and charges in the white paint emulsion were carried out for the thermal decomposition. Besides this, X-ray diffractometry was used to identify CaCO3 as charge and TiO2 (rutile phase) as pigment.It was observed through thermal techniques similar behavior to the samples even though with varied exposure time.Kinetic studies of the samples allowed to obtain the activation energy (Ea) and Arrhenius parameters (A) to the thermal decomposition of acrylic resin to three different commercial emulsion (called P-1, P-2, P-3) through non-isothermal procedures. The values of E. varied regarding the exposition time (eight months) and solar radiation from 173 to 197 U mol(-1) (P-1 sample), from 175 to 226 W mol(-1) (P-2 sample) and 206 to 197 kJ mol(-1) (P-3 sample).Kinetic Compensation Effect (KCE) observed for samples P-2 and P-3 indicate acrylic resin s present in these may be similar in nature. This aspect could be observed by a small difference in the thermal behavior of the TG curves from P I to P-2 and P-3 sample.The simulated kinetic model to all the samples was the autocatalytic estdk Berggreen.