893 resultados para Macrophage suppression
Resumo:
Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV) infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA - memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA - memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression. © 2012 de Vries et al.
Resumo:
IFN-ß, IL-27, and IL-10 have been shown to exert a range of similar immunoregulatory effects in murine and human experimental systems, particularly in Th1- and Th17-mediated models of autoimmune inflammatory disease. In this study we sought to translate some of our previous findings in murine systems to human in vitro models and delineate the interdependence of these different cytokines in their immunoregulatory effects. We demonstrate that human IL-27 upregulates IL-10 in T cell-activated PBMC cultures and that IFN-ß drives IL-27 production in activated monocytes. IFN-ß-driven IL-27 is responsible for the upregulation of IL-10, but not IL-17 suppression, by IFN-ß in human PBMCs. Surprisingly, IL-10 is not required for the suppression of IL-17 by either IL-27 or IFN-ß in this model or in de novo differentiating Th17 cells, nor is IL-27 signaling required for the suppression of experimental autoimmune encephalomyelitis (EAE) by IFN-ß in vivo. Furthermore, and even more surprisingly, IL-10 is not required for the suppression of Th17-biased EAE by IL-27, in sharp contrast to Th1-biased EAE. In conclusion, IFN-ß and IL-27 both induce human IL-10, both suppress human Th17 responses, and both suppress murine EAE. However, IL-27 signaling is not required for the therapeutic effect of IFN-ß in EAE. Suppression of Th17-biased EAE by IL-27 is IL-10-independent, in contrast to its mechanism of action in Th1-biased EAE. Taken together, these findings delineate a complex set of interdependent and independent immunoregulatory mechanisms of IFN-ß, IL-27, and IL-10 in human experimental models and in murine Th1- and Th17-driven autoimmunity.
Resumo:
Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.
Resumo:
A two-dimensional numerical study of the expansion of a dense plasma through a more rarefied one is reported. The electrostatic ion-acoustic shock, which is generated during the expansion, accelerates the electrons of the rarefied plasma inducing a superthermal population which reduces electron thermal anisotropy. The Weibel instability is therefore not triggered and no self-generated magnetic fields are observed, in contrast with published theoretical results dealing with plasma expansion into vacuum. © The Author(s) 2013.
Resumo:
Aim: To evaluate the role of macrophages in the development of posterior capsule opacification (PCO). Methods: For this purpose, an extracapsular lens extraction was performed in 18 consecutive Sprague-Dawley rats. Animals were treated with liposomal clodronate (Cl MDP-lip-treated group, n = 10) or phosphate-buffered saline (PBS) (control group, n = 8) 1 day preoperatively and on the first day postoperatively, and sacrificed 3 days postoperatively. Masked clinical, light microscopy and immunohistochemistry studies were conducted. The Fisher exact test and randomisation test were used to assess statistically differences between groups. Results: A statistically significant reduction in the number of macrophages (ED1+, ED7+, ED8+) was found in the Cl MDP-lip-treated group compared with the PBS-lip-treated group (p = 0.048, p = 0.004, p = 0.027, respectively). There were no statistically significant differences with regards to the presence/absence of central opacification (p = 0.29) and capsular wrinkling (p = 0.21) as detected clinically between groups. Similarly, a qualitative evaluation of the degree of PCO with regards to lens epithelial cell (LEC) proliferation, capsular wrinkling and Soemmerring ring formation showed no statistically significance between groups (p = 0.27, p = 0.061, p = 1.0, respectively). However, a statistically significant reduction in the number of lens epithelial cells (LEC) counted in the centre of the posterior capsule was found in the Cl MDP-lip- treated group (p = 0.009). Conclusion: Depletion of macrophages was accompanied by a reduction in LEC in the centre of the posterior capsule in rodents.
Resumo:
Background: Fluticasone propionate was introduced in 1993 in the UK as a potentially safer inhaled corticosteroid than those already in use. The efficacy and safety of fluticasone has been established at recommended doses of 200 µg/day, but not at the higher doses that are often used.
Methods: Growth retardation was observed in six severely asthmatic children after introduction of high-dose fluticasone propionate treatment (dry powder). Assessment of cortisol response was by insulin-induced hypoglycaemia in three cases, by short tetracosactrin test in two, and by low-dose tetracosactrin and 24-hour urinary cortisol/creatinine ratio in one.
Findings: Six children with growth retardation noted after treatment with high-dose fluticasone propionate were found to have adrenal suppression. In one case the growth rate and cortisol response returned to normal 9 months after the fluticasone dose was reduced to 500 µg/day.
Interpretation: When high doses of fluticasone propionate are used, growth may be retarded and adrenal suppression may occur.
Resumo:
This paper investigates the use of plug-in parking lots (SmartPark) as integral energy storage to improve small-signal stability using plug-in electric vehicles (PEV). The paper establishes the Phillips-Heffron model of a power system for a SmartPark solution. Based on this model, SmartPark-based stabilisers have been designed based using phase compensation to improve power system oscillation stability. The effectiveness of stabilisation superimposed on the active and reactive power regulators is verified by simulations obtained from a multi-machine power system model with SmartPark and a large-scale wind farm inclusion.
Resumo:
The response of granulocyte-macrophage progenitor cells (in vitro colony-forming cells) and of colony-stimulating (CS) factor in serum were studied in mice infected intraperitoneally with 10(3) viable Salmonella typhimurium. Increases in the number of colony-forming cells in marrow and spleen and increases in the serum level of CS factor occurred during the infection. There was no evidence to suggest that progressive infection was associated with failure of macrophage production. Medium rich in CS factor increased the bactericidal activity of macrophages in vitro and it was suggested that CS factor could be involved in macrophage activation.
Resumo:
Wound healing, angiogenesis and hair follicle maintenance are often impaired in the skin of diabetic patients, but the pathogenesis has not been well understood. Here, we report that circulation levels of kallistatin, a member of the serine proteinase inhibitor (SERPIN) superfamily with anti-angiogenic activities, were elevated in Type 2 diabetic patients with diabetic vascular complications. To test the hypothesis that elevated kallistatin levels could contribute to a wound healing deficiency via inhibition of Wnt/β-catenin signaling, we generated kallistatin-transgenic (KS-TG) mice. KS-TG mice had reduced cutaneous hair follicle density, microvascular density, and panniculus adiposus layer thickness as well as altered skin microvascular hemodynamics and delayed cutaneous wound healing. Using Wnt reporter mice, our results showed that Wnt/β-catenin signaling is suppressed in dermal endothelium and hair follicles in KS-TG mice. Lithium, a known activator of β-catenin via inhibition of glycogen synthase kinase-3β, reversed the inhibition of Wnt/β-catenin signaling by kallistatin and rescued the wound healing deficiency in KS-TG mice. These observations suggest that elevated circulating anti-angiogenic serpins in diabetic patients may contribute to impaired wound healing through inhibition of Wnt/β-catenin signaling. Activation of Wnt/β-catenin signaling, at a level downstream of Wnt receptors, may ameliorate the wound healing deficiency in diabetic patients.Journal of Investigative Dermatology accepted article preview online, 24 January 2014. doi:10.1038/jid.2014.40.
Resumo:
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.
Resumo:
Social scientific work on the suppression, mitigation or denial of prejudiced attitudes has tended to focus on the strategic self-presentation and self-monitoring undertaken by individual social actors on their own behalf. In this paper, we argue that existing perspectives might usefully be extended to incorporate three additional considerations. First, that social actors may, on some occasions, act to defend not only themselves, but also others from charges of prejudice. Second, that over the course of any social encounter, interactants may take joint responsibility for policing conversation and for correcting and suppressing the articulation of prejudiced talk. Third, that a focus on the dialogic character of conversation affords an appreciation of the ways in which the status of any particular utterance, action or event as 'racist' or 'prejudiced' may constitute a social accomplishment. Finally, we note the logical corollary of these observations - that in everyday life, the occurrence of 'racist discourse' is likely to represent a collaborative accomplishment, the responsibility for which is shared jointly between the person of the speaker and those other co-present individuals who occasion, reinforce or simply fail to suppress it.
Resumo:
Macrophage migration inhibitory factor (MIF), which inhibits apoptosis and promotes angiogenesis, is expressed in cancers suppressing immune surveillance. Its biological role in human glioblastoma is, however, only poorly understood. We examined in-vivo expression of MIF in 166 gliomas and 23 normal control brains by immunohistochemistry. MIF immunoreactivity was enhanced in neoplastic astrocytes in WHO grade II glioma and increased significantly in higher tumour grades (III-IV). MIF expression was further assessed in 12 glioma cell lines in vitro. Quantitative RT-PCR showed that MIF mRNA expression was elevated up to 800-fold in malignant glioma cells compared with normal brain. This translated into high protein levels as assessed by immunoblotting of total cell lysates and by ELISA-based measurement of secreted MIF. Wild-type p53-retaining glioma cell lines expressed higher levels of MIF, which may be connected with the previously described role of MIF as a negative regulator of wild-type p53 signalling in tumour cells. Stable knockdown of MIF by shRNA in glioma cells significantly increased tumour cell susceptibility towards NK cell-mediated cytotoxicity. Furthermore, supernatant from mock-transfected cells, but not from MIF knockdown cells, induced downregulation of the activating immune receptor NKG2D on NK and CD8+ T cells. We thus propose that human glioma cell-derived MIF contributes to the immune escape of malignant gliomas by counteracting NK and cytotoxic T-cell-mediated tumour immune surveillance. Considering its further cell-intrinsic and extrinsic tumour-promoting effects and the availability of small molecule inhibitors, MIF seems to be a promising candidate for future glioma therapy.
Resumo:
The proinflammatory cytokine macrophage migration inhibitory factor (MIF) stimulates tumor cell proliferation, migration, and metastasis; promotes tumor angiogenesis; suppresses p53-mediated apoptosis; and inhibits antitumor immunity by largely unknown mechanisms. We here describe an overexpression of MIF in ovarian cancer that correlates with malignancy and the presence of ascites. Functionally, we find that MIF may contribute to the immune escape of ovarian carcinoma by transcriptionally down-regulating NKG2D in vitro and in vivo which impairs NK cell cytotoxicity toward tumor cells. Together with the additional tumorigenic properties of MIF, this finding provides a rationale for novel small-molecule inhibitors of MIF to be used for the treatment of MIF-secreting cancers.