983 resultados para Luminescence lifetimes
Resumo:
Al-doped and B, Al co-doped SiO2 xerogels with Eu2+ ions were prepared only by sol-gel reaction in air without reducing heat-treatment or post-doping. The luminescence characteristics and mechanism of europium doping SiO2 xerogels were studied as a function of the concentration of Al, B, the europium concentration and the host composition. The emission spectra of the Al-doped and B, Al codoped samples all show an efficient emission broad band in the blue violet range. The blue emission of the Al-doped sample was centered at 437 nm, whereas the B, Al co-doped xerogel emission maximum shifted to 423 nm and the intensity became weaker. Concentration quenching effect occurred in both the Al-doped and B, Al co-doped samples, which probably is the result of the transfer of the excitation energy from Eu2+ ions to defects. The highest Eu2+ emission intensity was observed for samples with the Si(OC2H5)(4):C2H5OH:H2O molar ratio of 1:2:4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A theoretical surface-state model of porous-silicon luminescence is proposed. The temperature effect on the PhotoLuminescence (PL) spectrum for pillar and spherical structures is considered, and it is found that the effect is dependent on the doping concentration, the excitation strength, and the shape and dimensions of the Si microstructure. The doping concentration has an effect on the PL intensity at high temperatures and the excitation strength has an effect on the PL intensity at low temperaturs. The variations of the PL intensity with temperature are different for the pillar and spherical structures. At low temperatures the PL intensity increases in the pillar structure, while in the spherical structure the PL intensity decreases as the temperature increases, at high temperatures the PL intensities have a maximum for both models. The temperature, at which the PL intensity reaches its maximum, depends on the doping concentration. The PL spectrum has a broader peak structure in the spherical structure than in the pillar structure. The theoretical results are in agreement with experimental results.
Resumo:
A broad absorption band around 500 nm is observed in ZnS nanoparticles. The absorption becomes more intensive and shifts to the blue as the particle size is decreased. The absorption energy is lower than the band gap of the particles and is considered to be caused by the surface states. This assignment is supported by the results of the fluorescence and of the thermoluminescence of the surface states. Both the absorption and the fluorescence reveal that the surface states are size dependent. The glow peak of the semiconductor particles is not varied as much upon decreasing size, indicating the trap depth of the surface states is not sensitive to the particle size. Considering these results, a new model on the size dependence of the surface states is proposed, which may explain our observations reasonably. (C) 1997 American Institute of Physics.