883 resultados para Low-Voltage Grid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocyrstalline LaGaO3 and Dy3+- and Eu3+-doped LaGaO3 were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveals that the samples begin to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FE-SEM images indicate that the Dy3+- and Eu3+-doped LaGaO3 samples are both composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the undoped LaGaO3 sample shows a strong blue emission peaking at 433 nm, and the Dy3+- and Eu3+-doped LaGaO3 samples show their characteristic emissions of Dy3+ (F-4(9/2)-H-6(15/2) and F-4(9/2)-H-6(13/2) transitions) and Eu3+ (D-5(0,1,2)-F-7(1,2,3,4) transitions), respectively. The relevant luminescence mechanisms are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline CaTiO3:Pr3+ phosphor layers were coated on nonaggregated, monodisperse, and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2-CaTiO3:Pr3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2-CaTiO3:Pr3+ phosphor particles. The obtained core-shell structured phosphors consist of well dispersed submicron spherical particles with a narrow size distribution. The thickness of the CaTiO3:Pr3+ shell could be easily controlled by changing the number of deposition cycles (about 70 nm for four deposition cycles). The core-shell SiO2-CaTiO3:Pr3+ particles show a strong red emission corresponding to D-1(2)-H-3(4) (612 nm) of Pr3+ under the excitation of ultraviolet (326 nm) and low voltage electron beams (1-5 kV). These particles may be used in field emission displays.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A blue emitting Sr2CeO4 phosphor with a one-dimensional structure has been prepared by a two-step spray pyrolysis (SP) method, starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives. The material is ultimately designed for field emission displays (FEDs). X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), field emission scanning electron microscope pictures (FE-SEM) as well as photoluminescence (PL) and cathodoluminescence (CL) spectroscopy and lifetime measurements have been employed to characterize the samples. The morphology, PL and low voltage CL properties of Sr2CeO4 phosphors as-prepared using the SP method have been investigated by changing the concentration of the precursor solution, concentration of PEG, annealing temperature, acceleration voltage and filament current. The obtained Sr2CeO4 phosphor particles are spherical and of submicron size, 0.5-2 mu m. The emission spectrum of the phosphors shows a broad band with maximum at 467 nm (lifetime = 37.4 mu s; CIE chromaticity coordinates: x = 0.15 and y = 0.21), presumably due to a ligand-to-metal charge-transfer transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the current-voltage and electroluminescent (EL) characteristics of single-layer organic devices based on poly(9-vinylcarbazole) (PVK) and tris(8-hydroxyquinoline)aluminium (Alq(3)) blend with different PVK : Alq(3) concentrations. The experimental results from the observed thickness and temperature dependence clearly demonstrate that the current at low voltage is due to the holes injected at the anode and is space-charge limited, whereas the current at the high voltage that steeply increases is explained as the electron tunnelling injection at the cathode. The hole mobility is directly determined by space-charge-limited current at the low voltage region and decreases with increasing Alq(3) content in the blend. The EL efficiency shows concentration dependence, which is attributed to the change of the transport of electrons and holes in the blend film.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

区别于现有的电动、气动螺丝刀工具,该螺丝刀系统在驱动螺丝时,能对螺钉头实现无轴向压力的调节。刀头在旋转的同时随螺钉轴向进给,转速与进给量匹配,保证刀头与螺钉不脱节。该系统调整精度高,刀头转动精度可达0.72°,其应用于断路器类低压电气产品的自动调试,对确保产品质量、提高生产效率具有积极意义。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

介绍了NS2 2 5电动机起动器自动检测与校验生产线 ,指出低压电器产品的自动化生产及其检测是生产企业面临严重课题。自动化生产线充分利用计算机技术及其网络技术 ,实现工厂无人自动化生产 ,它充分利用现代检测技术 ,尤其是激光技术 ,解决生产中测量与标记问题。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Previous studies have demonstrated that treatment strategy plays a critical role in ensuring maximum stone fragmentation during shockwave lithotripsy (SWL). We aimed to develop an optimal treatment strategy in SWL to produce maximum stone fragmentation. MATERIALS AND METHODS: Four treatment strategies were evaluated using an in-vitro experimental setup that mimics stone fragmentation in the renal pelvis. Spherical stone phantoms were exposed to 2100 shocks using the Siemens Modularis (electromagnetic) lithotripter. The treatment strategies included increasing output voltage with 100 shocks at 12.3 kV, 400 shocks at 14.8 kV, and 1600 shocks at 15.8 kV, and decreasing output voltage with 1600 shocks at 15.8 kV, 400 shocks at 14.8 kV, and 100 shocks at 12.3 kV. Both increasing and decreasing voltages models were run at a pulse repetition frequency (PRF) of 1 and 2 Hz. Fragmentation efficiency was determined using a sequential sieving method to isolate fragments less than 2 mm. A fiberoptic probe hydrophone was used to characterize the pressure waveforms at different output voltage and frequency settings. In addition, a high-speed camera was used to assess cavitation activity in the lithotripter field that was produced by different treatment strategies. RESULTS: The increasing output voltage strategy at 1 Hz PRF produced the best stone fragmentation efficiency. This result was significantly better than the decreasing voltage strategy at 1 Hz PFR (85.8% vs 80.8%, P=0.017) and over the same strategy at 2 Hz PRF (85.8% vs 79.59%, P=0.0078). CONCLUSIONS: A pretreatment dose of 100 low-voltage output shockwaves (SWs) at 60 SWs/min before increasing to a higher voltage output produces the best overall stone fragmentation in vitro. These findings could lead to increased fragmentation efficiency in vivo and higher success rates clinically.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of source/drain engineering on the performance of a six-transistor (6-T) static random access memory (SRAM) cell, based on 22 nm double-gate (DG) SOI MOSFETs, has been analyzed using mixed-mode simulation, for three different circuit topologies for low voltage operation. The trade-offs associated with the various conflicting requirements relating to read/write/standby operations have been evaluated comprehensively in terms of eight performance metrics, namely retention noise margin, static noise margin, static voltage/current noise margin, write-ability current, write trip voltage/current and leakage current. Optimal design parameters with gate-underlap architecture have been identified to enhance the overall SRAM performance, and the influence of parasitic source/drain resistance and supply voltage scaling has been investigated. A gate-underlap device designed with a spacer-to-straggle (s/sigma) ratio in the range 2-3 yields improved SRAM performance metrics, regardless of circuit topology. An optimal two word-line double-gate SOI 6-T SRAM cell design exhibits a high SNM similar to 162 mV, I-wr similar to 35 mu A and low I-leak similar to 70 pA at V-DD = 0.6 V, while maintaining SNM similar to 30% V-DD over the supply voltage (V-DD) range of 0.4-0.9 V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of a plasma discharge at low voltage (200-600 V) in saline solution is characterized using fast and standard CCD camera imaging. Vapor formation, plasma formation, and vapor collapse and subsequent pressure wave propagation are observed. If, with increasing voltage, the total energy deposited is kept approximately constant, the sequence and nature of events are similar but develop faster and more reproducibly at the higher voltages. This is attributed to the slower temporal evolution of the vapor layer at lower voltages which means a greater sensitivity to hydrodynamic instabilities at the vapor-liquid interface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The range of applications for plasmas in liquids, plasmas in contact with liquid surfaces and plasmas containing liquid drops is growing rapidly across a range of technologies. Here the focus is on plasmas where the electrodes are immersed in liquids and their applications in nanoscience. The physical phenomena in both high voltage (tens of kilovolts) and low voltage (a few hundred volts) plasmas in liquid are described together with a discussion of the plasma-induced chemistry. Studies show that in water the plasmas are formed in water vapour created by Joule heating as either channels in the liquid or as layers on the electrodes. The chemistry in these water vapour plasmas and at their interface with the liquid is discussed in the context of the highly reactive radicals produced, such as H and OH. The current use of a variety of plasmas-in-liquid systems in the area of nanoscience is discussed, with an emphasis on nanoparticle growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large scale wind farms are subject to tripping, as a consequence of turbine failure, over-sensitive protection, turbines not equipped with low-voltage ride through (LVRT), and reactive power compensation device defects which can lead to voltage rises. This paper considers pertinent issues which render tripping based on a study of LVRT and wind farm protection, with methods to avoid large scale wind generator tripping proposed. The results of LVRT field tests in Jiuquan, China in December 2012 show that the proposed approaches are effective. The paper also presents work which proposes an early warning system to forecast the risk of wind power tripping.