919 resultados para Low energy ion scattering
Resumo:
This thesis is dedicated to the production and analysis of thin hydrogenated amorphous carbon films. A cascaded arc plasma source was used to produce a high density plasma of hydrocarbon radicals that deposited on a substrate at ultra low energies. The work was intended to create a better understanding of the mechanisms responsible for the film formation, by an extensive analysis on the properties of the films in correlation with the conditions used in the plasma cell. Two different precursors were used: methane and acetylene. They revealed a very different picture for the mechanism of film formation and properties. Methane was less successful, and the films formed were soft, with poor adhesion to the substrate and decomposing with time. Acetylene was the better option, and the films formed in this case were harder, with better adhesion to the substrate and stable over time. The plasma parameters could be varied to change the character of films, from polymer-like to diamond-like carbon. Films deposited from methane were grown at low deposition rates, which increased with the increase in process pressure and source power and decreased with the increase in substrate temperature and in hydrogen fraction in the carrier gas. The films had similar hydrogen content, sp3 fractions, average roughness (Ra) and low hardness. Above a deposition temperature of 350°C graphitization occurred - an increase in the sp2 fraction. A deposition mechanism was proposed, based upon the reaction product of the dissociative recombination of CH4+. There were small differences between the chemistries in the plasma at low and high precursor flow rates and low and high substrate temperatures; all experimental conditions led to formation of films that were either polymer-like, soft amorphous hydrogenated carbon or graphitic-like in structure. Films deposited from acetylene were grown at much higher deposition rates on different substrates (silicon, glass and plastics). The film quality increased noticeably with the increase of relative acetylene to argon flow rate, up to a certain value, where saturation occurred. With the increase in substrate temperature and the lowering of the acetylene injection ring position further improvements in film quality were achieved. The deposition process was scaled up to large area (5 x 5 cm) substrates in the later stages of the project. A deposition mechanism was proposed, based upon the reaction products of the dissociative recombination of C2H2 +. There were large differences between the chemistry in the plasma at low and medium/high precursor flow rates. This corresponded to large differences in film properties from low to medium flow rates, when films changed their character from polymer-like to diamond-like, whereas the differences between films deposited at medium and high precursor flow rates were small. Modelling of the film growth on silicon substrates was initiated and it explained the formation of sp2 and sp3 bonds at these very low energies. However, further improvements to the model are needed.
Resumo:
Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA
Resumo:
Funded by European Research Council ERC. Grant Number: project GA 335910 VEWA
Resumo:
Atualmente, com o crescimento exponencial das tecnologias de comunicação móveis, cada vez mais existe uma utilização generalizada de dispositivos móveis que adotam normas de última geração para redes de área corporal (BAN), como o Bluetooth Low Energy. Estas normas vieram revolucionar a monitorização de parâmetros vitais, permitindo que esta seja efetuada em qualquer lugar e momento e que ocorra uma redução do consumo energético. Se tivermos em consideração as doenças mais causadoras de morte, a tendência de envelhecimento da população e a dificuldade de acesso e acompanhamento médico por parte de pacientes com incapacidades, a monitorização remota de parâmetros vitais surge como um auxiliar clínico para um diagnóstico melhor, mais rápido e mais fiável. O presente projeto tem como objetivo especificar uma arquitetura para monitorização remota de parâmetros vitais no sentido de criar uma solução pronta a usar, simples, eficiente, segura, de baixo custo e compatível com dispositivos móveis de última geração. A monitorização remota será efetuada com recurso ao dispositivo móvel, que o paciente já possui, através de uma aplicação que atua como intermediária entre os sensores biofísicos que efetuam a recolha de dados vitais e a plataforma onde estes serão armazenados. Após o envio dos dados para a plataforma é possível o seu acesso pelos profissionais de saúde para que assim os tenham em consideração ao efetuar diagnósticos. Os testes realizados mostram a facilidade e simplicidade de utilização do sistema, fatores muito importantes, bem como a fiabilidade na leitura de parâmetros vitais.
Resumo:
Atualmente, com o crescimento exponencial das tecnologias de comunicação móveis, cada vez mais existe uma utilização generalizada de dispositivos móveis que adotam normas de última geração para redes de área corporal (BAN), como o Bluetooth Low Energy. Estas normas vieram revolucionar a monitorização de parâmetros vitais, permitindo que esta seja efetuada em qualquer lugar e momento e que ocorra uma redução do consumo energético. Se tivermos em consideração as doenças mais causadoras de morte, a tendência de envelhecimento da população e a dificuldade de acesso e acompanhamento médico por parte de pacientes com incapacidades, a monitorização remota de parâmetros vitais surge como um auxiliar clínico para um diagnóstico melhor, mais rápido e mais fiável. O presente projeto tem como objetivo especificar uma arquitetura para monitorização remota de parâmetros vitais no sentido de criar uma solução pronta a usar, simples, eficiente, segura, de baixo custo e compatível com dispositivos móveis de última geração. A monitorização remota será efetuada com recurso ao dispositivo móvel, que o paciente já possui, através de uma aplicação que atua como intermediária entre os sensores biofísicos que efetuam a recolha de dados vitais e a plataforma onde estes serão armazenados. Após o envio dos dados para a plataforma é possível o seu acesso pelos profissionais de saúde para que assim os tenham em consideração ao efetuar diagnósticos. Os testes realizados mostram a facilidade e simplicidade de utilização do sistema, fatores muito importantes, bem como a fiabilidade na leitura de parâmetros vitais.
Resumo:
Buildings are responsible for approximately 30% of EU end-use emissions (Bettgenhäuser , et al, 2009) and are at the forefront of efforts to meet emissions targets arising from their design, construction and operation. For the first time in its history, construction industry outputs must meet specific energy targets if planned reductions in greenhouse gas emissions are to be achieved through nearly zero energy buildings (nZEB) (EC, 2010) supported by on-site renewable heat and power. Where individual UK dwellings have been tested before occupation to assess whether they meet energy design criteria, the results indicate what is described as an ‘energy performance gap’, that is, energy use is almost always more than that specified. This leads to the conclusion that the performance gap is, inter alia, a function of the labour process and thus a function of social practice. Social practice theory, based on Schatzki’s model (2002), is utilised to explore the performance gap as a result of the changes demanded in the social practice of building initiated by new energy efficiency rules. The paper aims to open a discussion where failure in technical performance is addressed as a social phenomenon.
Resumo:
Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.
Resumo:
The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector.
Resumo:
Systematic low-temperature measurements of the thermal conductivity, specific heat, dielectric constant, and temperature-dependent ultrasound velocity have been made on a single piece of vitreous silica. These measurements were repeated after fast neutron irradiation of the material. It was found that the irradiation produced changes of the same relative magnitude in the low-temperature excess specific heat C , the thermal conductivity K, ex and the anomalous temperature dependence of the ultrasound velocity Deltav/v. A corresponding change in the temperature dependent dielectric constant was not observed. It is therefore likely that K and Deltav/v are determined by the same localized excitations responsible for C , but the temperature dependence of the dielectric constant may have a different, though possibly related, origin. Furthermore, a consistent account for the measured C , K, ex and Deltav/v of unirradiated silica is given by the tunneling-state model with a single, energy-dependent density of states. Changes in these three properties due to irradiation can be explained by altering only the density of tunneling states incorporated in the model.
Resumo:
In this thesis project, a building in Vegagatan 12, Gävle has been analysed in order to see why it does consume more energy than it was expected. This building is a low energy building certified by Miljöbyggnad and it should use less than 55kWh/m2 year and nowadays it is using 62.23 kWh/m2. To get the needed data, some information about the building has been gathered, some measurements have been done in the building and some calculations have been done with those measurements. Finally, some possible solutions have been offered to reduce the energy use of the building. Insulating the floor, the pipes and the walls, reducing the indoor temperature in winter... All of these changes need the help of environmentally friendly attitudes, which is a very important fact in low energy buildings.