884 resultados para Logic Programming,Constraint Logic Programming,Multi-Agent Systems,Labelled LP
Resumo:
The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
Worldwide electricity markets have been evolving into regional and even continental scales. The aim at an efficient use of renewable based generation in places where it exceeds the local needs is one of the main reasons. A reference case of this evolution is the European Electricity Market, where countries are connected, and several regional markets were created, each one grouping several countries, and supporting transactions of huge amounts of electrical energy. The continuous transformations electricity markets have been experiencing over the years create the need to use simulation platforms to support operators, regulators, and involved players for understanding and dealing with this complex environment. This paper focuses on demonstrating the advantage that real electricity markets data has for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations will bring to the participant countries. A case study using MASCEM (Multi-Agent System for Competitive Electricity Markets) is presented, with a scenario based on real data, simulating the European Electricity Market environment, and comparing its performance when using several different market mechanisms.
Resumo:
The recent changes on power systems paradigm requires the active participation of small and medium players in energy management. With an electricity price fluctuation these players must manage the consumption. Lowering costs and ensuring adequate user comfort levels. Demand response can improve the power system management and bring benefits for the small and medium players. The work presented in this paper, which is developed aiming the smart grid context, can also be used in the current power system paradigm. The proposed system is the combination of several fields of research, namely multi-agent systems and artificial neural networks. This system is physically implemented in our laboratories and it is used daily by researchers. The physical implementation gives the system an improvement in the proof of concept, distancing itself from the conventional systems. This paper presents a case study illustrating the simulation of real-time pricing in a laboratory.
Resumo:
Dissertation presented to obtain the degree of Doctor in Electrical and Computer Engineering, specialization on Collaborative Enterprise Networks
Resumo:
Os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) surgiram com o objetivo de apoiar um conjunto de decisores no processo de tomada de decisão. Uma das abordagens mais comuns na literatura para a implementação dos SADG é a utilização de Sistemas Multi-Agente (SMA). Os SMA permitem refletir com maior transparência o contexto real, tanto na representação que cada agente faz do decisor que representa como no formato de comunicação utilizado. Com o crescimento das organizações, atualmente vive-se uma viragem no conceito de tomada de decisão. Cada vez mais, devido a questões como: o estilo de vida, os mercados globais e o tipo de tecnologias disponíveis, faz sentido falar de decisão ubíqua. Isto significa que o decisor deverá poder utilizar o sistema a partir de qualquer local, a qualquer altura e através dos mais variados tipos de dispositivos eletrónicos tais como tablets, smartphones, etc. Neste trabalho é proposto um novo modelo de argumentação, adaptado ao contexto da tomada de decisão ubíqua para ser utilizado por um SMA na resolução de problemas multi-critério. É assumido que cada agente poderá utilizar um estilo de comportamento que afeta o modo como esse agente interage com outros agentes em situações de conflito. Sendo assim, pretende-se estudar o impacto da utilização de estilos de comportamento ao longo do processo da tomada de decisão e perceber se os agentes modelados com estilos de comportamento conseguem atingir o consenso mais facilmente quando comparados com agentes que não apresentam nenhum estilo de comportamento. Pretende-se ainda estudar se o número de argumentos trocados entre os agentes é proporcional ao nível de consenso final após o processo de tomada de decisão. De forma a poder estudar as hipóteses de investigação desenvolveu-se um protótipo de um SADG, utilizando um SMA. Desenvolveu-se ainda uma framework de argumentação que foi adaptada ao protótipo desenvolvido. Os resultados obtidos permitiram validar as hipóteses definidas neste trabalho tendo-se concluído que os agentes modelados com estilos de comportamento conseguem na maioria das vezes atingir um consenso mais facilmente comparado com agentes que não apresentam nenhum estilo de comportamento e que o número de argumentos trocados entre os agentes durante o processo de tomada de decisão não é proporcional ao nível de consenso final.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Cooperative behaviour of agents within highly dynamic and nondeterministic domains is an active field of research. In particular establishing highly responsive teamwork, where agents are able to react on dynamic changes in the environment while facing unreliable communication and sensory noise, is an open problem. Moreover, modelling such responsive, cooperative behaviour is difficult. In this work, we specify a novel model for cooperative behaviour geared towards highly dynamic domains. In our approach, agents estimate each other’s decision and correct these estimations once they receive contradictory information. We aim at a comprehensive approach for agent teamwork featuring intuitive modelling capabilities for multi-agent activities, abstractions over activities and agents, and a clear operational semantic for the new model. This work encompasses a complete specification of the new language, ALICA.
Resumo:
Mit der vorliegenden Arbeit soll ein Beitrag zu einer (empirisch) gehaltvollen Mikrofundierung des Innovationsgeschehens im Rahmen einer evolutorischen Perspektive geleistet werden. Der verhaltensbezogene Schwerpunkt ist dabei, in unterschiedlichem Ausmaß, auf das Akteurs- und Innovationsmodell von Herbert Simon bzw. der Carnegie-School ausgerichtet und ergänzt, spezifiziert und erweitert dieses unter anderem um vertiefende Befunde der Kreativitäts- und Kognitionsforschung bzw. der Psychologie und der Vertrauensforschung sowie auch der modernen Innovationsforschung. zudem Bezug auf einen gesellschaftlich und ökonomisch relevanten Gegenstandsbereich der Innovation, die Umweltinnovation. Die Arbeit ist sowohl konzeptionell als auch empirisch ausgerichtet, zudem findet die Methode der Computersimulation in Form zweier Multi-Agentensysteme Anwendung. Als zusammenfassendes Ergebnis lässt sich im Allgemeinen festhalten, dass Innovationen als hochprekäre Prozesse anzusehen sind, welche auf einer Verbindung von spezifischen Akteursmerkmalen, Akteurskonstellationen und Umfeldbedingungen beruhen, Iterationsschleifen unterliegen (u.a. durch Lernen, Rückkoppelungen und Aufbau von Vertrauen) und Teil eines umfassenderen Handlungs- sowie (im Falle von Unternehmen) Organisationskontextes sind. Das Akteurshandeln und die Interaktion von Akteuren sind dabei Ausgangspunkt für Emergenzen auf der Meso- und der Makroebene. Die Ergebnisse der Analysen der in dieser Arbeit enthaltenen fünf Fachbeiträge zeigen im Speziellen, dass der Ansatz von Herbert Simon bzw. der Carnegie-School eine geeignete theoretische Grundlage zur Erfassung einer prozessorientierten Mikrofundierung des Gegenstandsbereichs der Innovation darstellt und – bei geeigneter Ergänzung und Adaption an den jeweiligen Erkenntnisgegenstand – eine differenzierte Betrachtung unterschiedlicher Arten von Innovationsprozessen und deren akteursbasierten Grundlagen sowohl auf der individuellen Ebene als auch auf Ebene von Unternehmen ermöglicht. Zudem wird deutlich, dass der Ansatz von Herbert Simon bzw. der Carnegie-School mit dem Initiationsmodell einen zusätzlichen Aspekt in die Diskussion einbringt, welcher bislang wenig Aufmerksamkeit fand, jedoch konstitutiv für eine ökonomische Perspektive ist: die Analyse der Bestimmungsgrößen (und des Prozesses) der Entscheidung zur Innovation. Denn auch wenn das Verständnis der Prozesse bzw. der Determinanten der Erstellung, Umsetzung und Diffusion von Innovationen von grundlegender Bedeutung ist, ist letztendlich die Frage, warum und unter welchen Umständen Akteure sich für Innovationen entscheiden, ein zentraler Kernbereich einer ökonomischen Betrachtung. Die Ergebnisse der Arbeit sind auch für die praktische Wirtschaftspolitik von Bedeutung, insbesondere mit Blick auf Innovationsprozesse und Umweltwirkungen.
Resumo:
One objective of artificial intelligence is to model the behavior of an intelligent agent interacting with its environment. The environment's transformations can be modeled as a Markov chain, whose state is partially observable to the agent and affected by its actions; such processes are known as partially observable Markov decision processes (POMDPs). While the environment's dynamics are assumed to obey certain rules, the agent does not know them and must learn. In this dissertation we focus on the agent's adaptation as captured by the reinforcement learning framework. This means learning a policy---a mapping of observations into actions---based on feedback from the environment. The learning can be viewed as browsing a set of policies while evaluating them by trial through interaction with the environment. The set of policies is constrained by the architecture of the agent's controller. POMDPs require a controller to have a memory. We investigate controllers with memory, including controllers with external memory, finite state controllers and distributed controllers for multi-agent systems. For these various controllers we work out the details of the algorithms which learn by ascending the gradient of expected cumulative reinforcement. Building on statistical learning theory and experiment design theory, a policy evaluation algorithm is developed for the case of experience re-use. We address the question of sufficient experience for uniform convergence of policy evaluation and obtain sample complexity bounds for various estimators. Finally, we demonstrate the performance of the proposed algorithms on several domains, the most complex of which is simulated adaptive packet routing in a telecommunication network.
Resumo:
We introduce basic behaviors as primitives for control and learning in situated, embodied agents interacting in complex domains. We propose methods for selecting, formally specifying, algorithmically implementing, empirically evaluating, and combining behaviors from a basic set. We also introduce a general methodology for automatically constructing higher--level behaviors by learning to select from this set. Based on a formulation of reinforcement learning using conditions, behaviors, and shaped reinforcement, out approach makes behavior selection learnable in noisy, uncertain environments with stochastic dynamics. All described ideas are validated with groups of up to 20 mobile robots performing safe--wandering, following, aggregation, dispersion, homing, flocking, foraging, and learning to forage.
Resumo:
L'experiència de l'autor en la temàtica d'agents intel·ligents i la seva aplicació als robots que emulen el joc de futbol han donat el bagatge suficient per poder encetar i proposar la temàtica plantejada en aquesta tesi: com fer que un complicat robot pugui treure el màxim suc de l'autoconeixement de l'estructura de control inclosa al seu propi cos físic, i així poder cooperar millor amb d'altres agents per optimitzar el rendiment a l'hora de resoldre problemes de cooperació. Per resoldre aquesta qüestió es proposa incorporar la dinàmica del cos físic en les decisions cooperatives dels agents físics unificant els móns de l'automàtica, la robòtica i la intel·ligència artificial a través de la noció de capacitat: la capacitat vista com a entitat on els enginyers de control dipositen el seu coneixement, i a la vegada la capacitat vista com la utilitat on un agent hi diposita el seu autoconeixement del seu cos físic que ha obtingut per introspecció. En aquesta tesi es presenta l'arquitectura DPAA que s'organitza seguint una jerarquia vertical en tres nivells d'abstracció o mòduls control, supervisor i agent, els quals presenten una estructura interna homogènia que facilita les tasques de disseny de l'agent. Aquests mòduls disposen d'un conjunt específic de capacitats que els permeten avaluar com seran les accions que s'executaran en un futur. En concret, al mòdul de control (baix nivell d'abstracció) les capacitats consisteixen en paràmetres que descriuen el comportament dinàmic i estàtic que resulta d'executar un controlador determinat, és a dir, encapsulen el coneixement de l'enginyer de control. Així, a través dels mecanismes de comunicació entre mòduls aquest coneixement pot anar introduint-se als mecanismes de decisió dels mòduls superiors (supervisor i agent) de forma que quan els paràmetres dinàmics i estàtics indiquin que pot haver-hi problemes a baix nivell, els mòduls superiors es poden responsabilitzar d'inhibir o no l'execució d'algunes accions. Aquest procés top-down intern d'avaluació de la viabilitat d'executar una acció determinada s'anomena procés d'introspecció. Es presenten diversos exemples per tal d'il·lustrar com es pot dissenyar un agent físic amb dinàmica pròpia utilitzant l'arquitectura DPAA com a referent. En concret, es mostra tot el procés a seguir per dissenyar un sistema real format per dos robots en formació de comboi, i es mostra com es pot resoldre el problema de la col·lisió utilitzant les capacitats a partir de les especificacions de disseny de l'arquitectura DPAA. Al cinquè capítol s'hi exposa el procés d'anàlisi i disseny en un domini més complex: un grup de robots que emulen el joc del futbol. Els resultats que s'hi mostren fan referència a l'avaluació de la validesa de l'arquitectura per resoldre el problema de la passada de la pilota. S'hi mostren diversos resultats on es veu que és possible avaluar si una passada de pilota és viable o no. Encara que aquesta possibilitat ja ha estat demostrada en altres treballs, l'aportació d'aquesta tesi està en el fet que és possible avaluar la viabilitat a partir de l'encapsulament de la dinàmica en unes capacitats específiques, és a dir, és possible saber quines seran les característiques de la passada: el temps del xut, la precisió o inclòs la geometria del moviment del robot xutador. Els resultats mostren que la negociació de les condicions de la passada de la pilota és possible a partir de capacitats atòmiques, les quals inclouen informació sobre les característiques de la dinàmica dels controladors. La complexitat del domini proposat fa difícil comparar els resultats amb els altres treballs. Cal tenir present que els resultats mostrats s'han obtingut utilitzant un simulador fet a mida que incorpora les dinàmiques dels motors dels robots i de la pilota. En aquest sentit cal comentar que no existeixen treballs publicats sobre el problema de la passada en què es tingui en compte la dinàmica dels robots. El present treball permet assegurar que la inclusió de paràmetres dinàmics en el conjunt de les capacitats de l'agent físic permet obtenir un millor comportament col·lectiu dels robots, i que aquesta millora es deu al fet que en les etapes de decisió els agents utilitzen informació relativa a la viabilitat sobre les seves accions: aquesta viabilitat es pot calcular a partir del comportament dinàmic dels controladors. De fet, la definició de capacitats a partir de paràmetres dinàmics permet treballar fàcilment amb sistemes autònoms heterogenis: l'agent físic pot ser conscient de les seves capacitats d'actuació a través de mecanismes interns d'introspecció, i això permet que pugui prendre compromisos amb altres agents físics.
Resumo:
La gestió de xarxes és un camp molt ampli i inclou molts aspectes diferents. Aquesta tesi doctoral està centrada en la gestió dels recursos en les xarxes de banda ampla que disposin de mecanismes per fer reserves de recursos, com per exemple Asynchronous Transfer Mode (ATM) o Multi-Protocol Label Switching (MPLS). Es poden establir xarxes lògiques utilitzant els Virtual Paths (VP) d'ATM o els Label Switched Paths (LSP) de MPLS, als que anomenem genèricament camins lògics. Els usuaris de la xarxa utilitzen doncs aquests camins lògics, que poden tenir recursos assignats, per establir les seves comunicacions. A més, els camins lògics són molt flexibles i les seves característiques es poden canviar dinàmicament. Aquest treball, se centra, en particular, en la gestió dinàmica d'aquesta xarxa lògica per tal de maximitzar-ne el rendiment i adaptar-la a les connexions ofertes. En aquest escenari, hi ha diversos mecanismes que poden afectar i modificar les característiques dels camins lògics (ample de banda, ruta, etc.). Aquests mecanismes inclouen els de balanceig de la càrrega (reassignació d'ample de banda i reencaminament) i els de restauració de fallades (ús de camins lògics de backup). Aquests dos mecanismes poden modificar la xarxa lògica i gestionar els recursos (ample de banda) dels enllaços físics. Per tant, existeix la necessitat de coordinar aquests mecanismes per evitar possibles interferències. La gestió de recursos convencional que fa ús de la xarxa lògica, recalcula periòdicament (per exemple cada hora o cada dia) tota la xarxa lògica d'una forma centralitzada. Això introdueix el problema que els reajustaments de la xarxa lògica no es realitzen en el moment en què realment hi ha problemes. D'altra banda també introdueix la necessitat de mantenir una visió centralitzada de tota la xarxa. En aquesta tesi, es proposa una arquitectura distribuïda basada en un sistema multi agent. L'objectiu principal d'aquesta arquitectura és realitzar de forma conjunta i coordinada la gestió de recursos a nivell de xarxa lògica, integrant els mecanismes de reajustament d'ample de banda amb els mecanismes de restauració preplanejada, inclosa la gestió de l'ample de banda reservada per a la restauració. Es proposa que aquesta gestió es porti a terme d'una forma contínua, no periòdica, actuant quan es detecta el problema (quan un camí lògic està congestionat, o sigui, quan està rebutjant peticions de connexió dels usuaris perquè està saturat) i d'una forma completament distribuïda, o sigui, sense mantenir una visió global de la xarxa. Així doncs, l'arquitectura proposada realitza petits rearranjaments a la xarxa lògica adaptant-la d'una forma contínua a la demanda dels usuaris. L'arquitectura proposada també té en consideració altres objectius com l'escalabilitat, la modularitat, la robustesa, la flexibilitat i la simplicitat. El sistema multi agent proposat està estructurat en dues capes d'agents: els agents de monitorització (M) i els de rendiment (P). Aquests agents estan situats en els diferents nodes de la xarxa: hi ha un agent P i diversos agents M a cada node; aquests últims subordinats als P. Per tant l'arquitectura proposada es pot veure com una jerarquia d'agents. Cada agent és responsable de monitoritzar i controlar els recursos als que està assignat. S'han realitzat diferents experiments utilitzant un simulador distribuït a nivell de connexió proposat per nosaltres mateixos. Els resultats mostren que l'arquitectura proposada és capaç de realitzar les tasques assignades de detecció de la congestió, reassignació dinàmica d'ample de banda i reencaminament d'una forma coordinada amb els mecanismes de restauració preplanejada i gestió de l'ample de banda reservat per la restauració. L'arquitectura distribuïda ofereix una escalabilitat i robustesa acceptables gràcies a la seva flexibilitat i modularitat.
Resumo:
The Konstanz Information Miner is a modular environment which enables easy visual assembly and interactive execution of a data pipeline. It is designed as a teaching, research and collaboration platform, which enables easy integration of new algorithms, data manipulation or visualization methods as new modules or nodes. In this paper we describe some of the design aspects of the underlying architecture and briefly sketch how new nodes can be incorporated.