930 resultados para Local optimization algorithms
Resumo:
This paper presents the Juste-Neige system for predicting the snow height on the ski runs of a resort using a multi-agent simulation software. Its aim is to facilitate snow cover management in order to i) reduce the production cost of artificial snow and to improve the profit margin for the companies managing the ski resorts; and ii) to reduce the water and energy consumption, and thus to reduce the environmental impact, by producing only the snow needed for a good skiing experience. The software provides maps with the predicted snow heights for up to 13 days. On these maps, the areas most exposed to snow erosion are highlighted. The software proceeds in three steps: i) interpolation of snow height measurements with a neural network; ii) local meteorological forecasts for every ski resort; iii) simulation of the impact caused by skiers using a multi-agent system. The software has been evaluated in the Swiss ski resort of Verbier and provides useful predictions.
Resumo:
Tractography is a class of algorithms aiming at in vivo mapping the major neuronal pathways in the white matter from diffusion magnetic resonance imaging (MRI) data. These techniques offer a powerful tool to noninvasively investigate at the macroscopic scale the architecture of the neuronal connections of the brain. However, unfortunately, the reconstructions recovered with existing tractography algorithms are not really quantitative even though diffusion MRI is a quantitative modality by nature. As a matter of fact, several techniques have been proposed in recent years to estimate, at the voxel level, intrinsic microstructural features of the tissue, such as axonal density and diameter, by using multicompartment models. In this paper, we present a novel framework to reestablish the link between tractography and tissue microstructure. Starting from an input set of candidate fiber-tracts, which are estimated from the data using standard fiber-tracking techniques, we model the diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions generated in every location of the brain by these candidate tracts. Then, we seek for the global weight of each of them, i.e., the effective contribution or volume, such that they globally fit the measured signal at best. We demonstrate that these weights can be easily recovered by solving a global convex optimization problem and using efficient algorithms. The effectiveness of our approach has been evaluated both on a realistic phantom with known ground-truth and in vivo brain data. Results clearly demonstrate the benefits of the proposed formulation, opening new perspectives for a more quantitative and biologically plausible assessment of the structural connectivity of the brain.
Resumo:
In this paper, a method for enhancing current QoS routing methods by means of QoS protection is presented. In an MPLS network, the segments (links) to be protected are predefined and an LSP request involves, apart from establishing a working path, creating a specific type of backup path (local, reverse or global). Different QoS parameters, such as network load balancing, resource optimization and minimization of LSP request rejection should be considered. QoS protection is defined as a function of QoS parameters, such as packet loss, restoration time, and resource optimization. A framework to add QoS protection to many of the current QoS routing algorithms is introduced. A backup decision module to select the most suitable protection method is formulated and different case studies are analyzed
Resumo:
Nowadays, there are several services and applications that allow users to locate and move to different tourist areas using a mobile device. These systems can be used either by internet or downloading an application in concrete places like a visitors centre. Although such applications are able to facilitate the location and the search for points of interest, in most cases, these services and applications do not meet the needs of each user. This paper aims to provide a solution by studying the main projects, services and applications, their routing algorithms and their treatment of the real geographical data in Android mobile devices, focusing on the data acquisition and treatment to improve the routing searches in off-line environments.
Resumo:
Miralls deformables més i més grans, amb cada cop més actuadors estan sent utilitzats actualment en aplicacions d'òptica adaptativa. El control dels miralls amb centenars d'actuadors és un tema de gran interès, ja que les tècniques de control clàssiques basades en la seudoinversa de la matriu de control del sistema es tornen massa lentes quan es tracta de matrius de dimensions tan grans. En aquesta tesi doctoral es proposa un mètode per l'acceleració i la paral.lelitzacó dels algoritmes de control d'aquests miralls, a través de l'aplicació d'una tècnica de control basada en la reducció a zero del components més petits de la matriu de control (sparsification), seguida de l'optimització de l'ordenació dels accionadors de comandament atenent d'acord a la forma de la matriu, i finalment de la seva posterior divisió en petits blocs tridiagonals. Aquests blocs són molt més petits i més fàcils de fer servir en els càlculs, el que permet velocitats de càlcul molt superiors per l'eliminació dels components nuls en la matriu de control. A més, aquest enfocament permet la paral.lelització del càlcul, donant una com0onent de velocitat addicional al sistema. Fins i tot sense paral. lelització, s'ha obtingut un augment de gairebé un 40% de la velocitat de convergència dels miralls amb només 37 actuadors, mitjançant la tècnica proposada. Per validar això, s'ha implementat un muntatge experimental nou complet , que inclou un modulador de fase programable per a la generació de turbulència mitjançant pantalles de fase, i s'ha desenvolupat un model complert del bucle de control per investigar el rendiment de l'algorisme proposat. Els resultats, tant en la simulació com experimentalment, mostren l'equivalència total en els valors de desviació després de la compensació dels diferents tipus d'aberracions per als diferents algoritmes utilitzats, encara que el mètode proposat aquí permet una càrrega computacional molt menor. El procediment s'espera que sigui molt exitós quan s'aplica a miralls molt grans.
Resumo:
Floor cleaning is a typical robot application. There are several mobile robots aviable in the market for domestic applications most of them with random path-planning algorithms. In this paper we study the cleaning coverage performances of a random path-planning mobile robot and propose an optimized control algorithm, some methods to estimate the are of the room, the evolution of the cleaning and the time needed for complete coverage.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
We present a new technique for audio signal comparison based on tonal subsequence alignment and its application to detect cover versions (i.e., different performances of the same underlying musical piece). Cover song identification is a task whose popularity has increased in the Music Information Retrieval (MIR) community along in the past, as it provides a direct and objective way to evaluate music similarity algorithms.This article first presents a series of experiments carried outwith two state-of-the-art methods for cover song identification.We have studied several components of these (such as chroma resolution and similarity, transposition, beat tracking or Dynamic Time Warping constraints), in order to discover which characteristics would be desirable for a competitive cover song identifier. After analyzing many cross-validated results, the importance of these characteristics is discussed, and the best-performing ones are finally applied to the newly proposed method. Multipleevaluations of this one confirm a large increase in identificationaccuracy when comparing it with alternative state-of-the-artapproaches.
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
Iterated Local Search has many of the desirable features of a metaheuristic: it is simple, easy to implement, robust, and highly effective. The essential idea of Iterated Local Search lies in focusing the search not on the full space of solutions but on a smaller subspace defined by the solutions that are locally optimal for a given optimization engine. The success of Iterated Local Search lies in the biased sampling of this set of local optima. How effective this approach turns out to be depends mainly on the choice of the local search, the perturbations, and the acceptance criterion. So far, in spite of its conceptual simplicity, it has lead to a number of state-of-the-art results without the use of too much problem-specific knowledge. But with further work so that the different modules are well adapted to the problem at hand, Iterated Local Search can often become a competitive or even state of the artalgorithm. The purpose of this review is both to give a detailed description of this metaheuristic and to show where it stands in terms of performance.
Resumo:
The set covering problem is an NP-hard combinatorial optimization problemthat arises in applications ranging from crew scheduling in airlines todriver scheduling in public mass transport. In this paper we analyze searchspace characteristics of a widely used set of benchmark instances throughan analysis of the fitness-distance correlation. This analysis shows thatthere exist several classes of set covering instances that have a largelydifferent behavior. For instances with high fitness distance correlation,we propose new ways of generating core problems and analyze the performanceof algorithms exploiting these core problems.
Resumo:
Tot seguit presentem un entorn per analitzar senyals de tot tipus amb LDB (Local Discriminant Bases) i MLDB (Modified Local Discriminant Bases). Aquest entorn utilitza funcions desenvolupades en el marc d’una tesi en fase de desenvolupament. Per entendre part d’aquestes funcions es requereix un nivell de coneixement avançat de processament de senyals. S’han extret dels treballs realitzats per Naoki Saito [3], que s’han agafat com a punt de partida per la realització de l’algorisme de la tesi doctoral no finalitzada de Jose Antonio Soria. Aquesta interfície desenvolupada accepta la incorporació de nous paquets i funcions. Hem deixat un menú preparat per integrar Sinus IV packet transform i Cosine IV packet transform, tot i que també podem incorporar-n’hi altres. L’aplicació consta de dues interfícies, un Assistent i una interfície principal. També hem creat una finestra per importar i exportar les variables desitjades a diferents entorns. Per fer aquesta aplicació s’han programat tots els elements de les finestres, en lloc d’utilitzar el GUIDE (Graphical User Interface Development Enviroment) de MATLAB, per tal que sigui compatible entre les diferents versions d’aquest programa. En total hem fet 73 funcions en la interfície principal (d’aquestes, 10 pertanyen a la finestra d’importar i exportar) i 23 en la de l’Assistent. En aquest treball només explicarem 6 funcions i les 3 de creació d’aquestes interfícies per no fer-lo excessivament extens. Les funcions que explicarem són les més importants, ja sigui perquè s’utilitzen sovint, perquè, segons la complexitat McCabe, són les més complicades o perquè són necessàries pel processament del senyal. Passem cada entrada de dades per part de l’usuari per funcions que ens detectaran errors en aquesta entrada, com eliminació de zeros o de caràcters que no siguin números, com comprovar que són enters o que estan dins dels límits màxims i mínims que li pertoquen.
Resumo:
The high complexity of cortical convolutions in humans is very challenging both for engineers to measure and compare it, and for biologists and physicians to understand it. In this paper, we propose a surface-based method for the quantification of cortical gyrification. Our method uses accurate 3-D cortical reconstruction and computes local measurements of gyrification at thousands of points over the whole cortical surface. The potential of our method to identify and localize precisely gyral abnormalities is illustrated by a clinical study on a group of children affected by 22q11 Deletion Syndrome, compared to control individuals.
Resumo:
Tractography algorithms provide us with the ability to non-invasively reconstruct fiber pathways in the white matter (WM) by exploiting the directional information described with diffusion magnetic resonance. These methods could be divided into two major classes, local and global. Local methods reconstruct each fiber tract iteratively by considering only directional information at the voxel level and its neighborhood. Global methods, on the other hand, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The latter have shown improvements compared to previous techniques but these algorithms still suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are usually considered during the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the WM; this violates important properties of neural connections, which are known to originate in the gray matter (GM) and develop in the WM. Hence, this shortcoming poses serious limitations for the use of these techniques for the assessment of the structural connectivity between brain regions and, de facto, it can potentially bias any subsequent analysis. Moreover, the estimated tracts are not quantitative, every fiber contributes with the same weight toward the predicted diffusion signal. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications which: (i) explicitly enforces anatomical priors of the tracts in the optimization and (ii) considers the effective contribution of each of them, i.e., volume, to the acquired diffusion magnetic resonance imaging (MRI) image. We evaluated our approach on both a realistic diffusion MRI phantom and in vivo data, and also compared its performance to existing tractography algorithms.
Resumo:
Sophisticated magnetic resonance tagging techniques provide powerful tools for the non-invasive assessment of the local heartwall motion towards a deeper fundamental understanding of local heart function. For the extraction of motion data from the time series of magnetic resonance tagged images and for the visualization of the local heartwall motion a new image analysis procedure has been developed. New parameters have been derived which allows quantification of the motion patterns and are highly sensitive to any changes in these patterns. The new procedure has been applied for heart motion analysis in healthy volunteers and in patient collectives with different heart diseases. The achieved results are summarized and discussed.