911 resultados para Liver Transplant
Resumo:
A reciprocal relationship exists between the cytochrome P-450 content and d-aminolaevulinate synthetase activity in adult rats. In young rats the basal d-aminolaevulinate synthetase activity is higher and the cytochrome P-450 content is lower compared with the adult rat liver. Administration of allylisopropylacetamide neither induces the enzyme nor causes degradation of cytochrome P-450 in the young rat liver, unlike adult rat liver. Allylisopropylacetamide fails to induce d-aminolaevulinate synthetase in adrenalectomized–ovariectomized animals or intact animals pretreated with successive doses of the drug, in the absence of cortisol. The cortisol-mediated induction of the enzyme is sensitive to actinomycin D. Allylisopropylacetamide administration degrades microsomal haem but not nuclear haem. Haem does not counteract the decrease in cytochrome P-450 content caused by allylisopropylacetamide administration, but there is evidence for the formation of drug-resistant protein-bound haem in liver microsomal material under these conditions. Phenobarbital induces d-aminolaevulinate synthetase under conditions when there is no breakdown of cytochrome P-450. On the basis of these results and those already published, a model is proposed for the regulation of d-aminolaevulinate synthetase induction in rat liver.
Resumo:
Administration of 3,5-diethoxy carbonyl-1,4-dihydrocollidine (DDC) to mice resulted in a striking increase in the level of δ-aminolevulinic acid (ALA) synthetase in liver. Although the enzyme activity was primarily localized in mitochondria and postmicrosomal supernatant fluid, a significant level of activity was also detected in purified nuclei. The time course of induction showed a close parallelism between the bound and free enzyme activities with the former always accounting for a higher percentage of the total activity as compared to the latter. Studies with cycloheximide indicated a half-life of around 3 hr for both the bound and free ALA synthetase. Actinomycin D and hemin prevented enzyme induction when administered along with DDC, but when administered 12 hr after DDC treatment Actinomycin D did not lead to a decay of either the bound or free enzyme activity and hemin inhibited the bound enzyme activity but not the free enzyme level. The molecular sizes of the mitochondrial and cytosolic ALA synthetase(s) were found to be similar on sephadex columns.
Resumo:
Mitochondria isolated from the livers of rats administered with sodium meta-, ortho-, or polyvanadate, but not vanadyl sulphate, exhibited enhanced Ca2+ — stimulated respiration and uptake of calcium. These effects were shown also by mitochondria isolated from livers perfused with polyvanadate. The concentration of acid-soluble calcium decreased significantly in the mitochondrial fraction on vanadate treatment, while that in the cytosol showed a corresponding increase. Phenoxybenzamine, an antagonist to a-adrenergic receptors, effectively inhibited vanadate-induced Ca2+ mobilization, but surgical sympathectomy was without effect. This is the first demonstration of vanadate mimicking agr-adrenergic agonists in vivo.
Resumo:
Our finding that the inhibitors of DNA methylation, 5-azacytidine, 5-azadeoxycytidine or adenosine dialdehyde, given after a carcinogen all potentiated initiation suggested that hypomethylation of DNA during repair synthesis of DNA might play a role in the initiation of the carcinogenic process. To examine this aspect further, we have asked the question, do the nodules which develop from initiated cells after promotion with 1% orotic acid exhibit an altered methylation pattern in their DNA? The methylation status of the DNA from nodules has been examined using the restriction endonucleases HpaII/MspI and HhaI which distinguish between methylated and unmethylated cytosines in their nucleotide recognition DNA 5'-CCGG and 5'-GCGC respectively. The proto-oncogenes, c-myc, c-fos and c-Ha-ras, in the DNA were primarily studied in this investigation because of their possible involvement in cell proliferation and/or in cell transformation and tumorigenesis. The results indicate that in the nodule DNA, c-myc and c-fos are hypomethylated in the sequence of CCGG while the c-Ha-ras shows hypomethylation in the alternating GCGC sequence. This methylation pattern seen in the nodule DNA is not found in the DNA of the non-nodular surrounding liver or liver tissue after exposure to promoter or carcinogen alone. It is also not found in the DNA of regenerating liver. It is particularly significant that the methylation patterns in the c-myc and c-Ha-ras regions are similar to those found in several cancer tissues. The results suggest that this methylation pattern is acquired early in the carcinogenic process and raises the question whether it has any bearing on the process.
Resumo:
Alpha-Terpineol (I), a monocyclic monoterpene tertiary alcohol, is widely used in the manufacture of perfumes, cosmetics, soaps and antiseptic agents. It was reported earlier (Horning et al. 1976) that this monoterpene alcohol when administered to humans is hydroxylated to p-menth-l,2,8-triol (II). It is not known whether c~-terpineol also produces other metabolites during its metabolism in the mammalian system and if so, the nature of these metabolites.
Resumo:
The phosphate-inhibitable neutral protease activity of the heavy mitochondrial fraction of rat liver is of lysosomal origin. The activity is essentially due to the thiol proteinases of the lysosomes. Digitonin treatment of the mitochondrial fraction results in the release of about 85 per cent of the neutral protease activity and the residual activity has an alkaline pH optimum and is not inhibited by phosphate. Clofibrate feeding at 0.5 per cent level in the diet results in enhanced levels of lysosomal enzymes. The increase is however restricted to the lysosome-rich fraction such that the activities associated with the heavy mitochondrial fraction show a significant decrease. It is suggested that clofibrate inhibits engulfment of mitochondria by lysosomes and this results in enhanced mitochondrial protein content.
Resumo:
The suggestion that a rapidly sedimenting rough endoplasmic reticulum fraction in close association with mitochondria, is the preferred site of cytochrome P-450 synthesis has been examined. The rate of cytochrome P-450 synthesis in the different subcellular fractions has been evaluated Image , using the immunoprecipitation technique. The results indicate that the conventional microsomal fraction (100,000 X g sediment) is the major site of cytochrome P-450 synthesis and that the rapidly sedimenting rough endoplasmic reticulum fraction associated with mitochondria is not a preferred site for the hemoprotein synthesis.
Resumo:
The high molecular weight aminoacyl-tRNA synthetase complex (the 24S complex) was isolated from rat liver by ultracentrifugation. The lysyl-tRNA synthetase (E.C. 6.1.1.6) was selectively dissociated by hydrophobic interaction chromatography on 1,6 diaminohexyl agarose followed by hydroxylapatite chromatography and DEAE chromatography. The lysyl-tRNA synthetase dissociated from the 24S synthetase complex was purified approximately to 2700 fold with 14% yield.
Resumo:
The positive homotropic binding of tetrahydrofolate to monkey liver serine hydroxymethyltransferase was abolished on preincubating the enzyme with NADH and NADPH. NAD+ was a negative heterotropic effector, whereas NADP+ was without effect. The allosteric effects of nicotinamide nucleotides on the serine hydroxymethyltransferase, reported for the first time, lead to a better understanding of the regulation of the metabolic interconversion of folate coenzymes.
Resumo:
The mechanism of interaction of 0-amino-D-serine (OADS) with sheep liver serine hydroxymethyltransferase (EC 2.1.2.1) (SHMT) was established by measuring changes in the enzyme activity,absorption spectra, circular dichroism (CD) spectra, and stopped-flow spectrophotometry. OADS was a reversible noncompetitive inhibitor (Ki = 1.8 pM) when serine was the varied substrate. The first step in the interaction of OADS with the enzyme was the disruption of enzyme-Schiff base, characterized by the rapid disappearance of absorbance at 425 nm (6.5 X lo3 M-' s-') and CD intensity at 430 nm. Concomitantly,there was a rapid increase in absorbance and CD intensity at 390 nm. The spectral properties of this intermediate enabled its identification as pyridoxal 5'-phosphate (PLP). These changes were followed by a slow unimolecular step (2 X s-') leading to the formation of PLP-OADS oxime, which was confirmed by its absorbance and fluorescence spectra and retention time on high-performance liquid chromatography. The PLP-OADS oxime was displaced from the enzyme by the addition of PLP as evidenced by the restoration of complete enzyme activity as well as by the spectral properties. The unique feature of the mechanism proposed for the interaction of OADS with sheep liver SHMT was the formation of PLP as an intermediate.