950 resultados para Liga de titânio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modificações na composição química e no processamento termomecânico têm sido algumas das várias alternativas estudadas, para melhorar o desempenho de ligas de alumínio tradicionais. Neste trabalho foi modificada a composição de uma liga Al-Mn-Mg do tipo AA 3104, endurecível por deformação, adicionando-se diversos teores de zinco, transformando-a numa liga Al-Mn-Mg(Zn), endurecível por precipitação. O objetivo foi estudar e quantificar os efeitos do zinco sobre o processamento termomecânico e as propriedades mecânicas da liga modificada. Ligas com teores de zinco entre 0,03 a 1,52% foram fundidas e processadas obtendo-se um encruamento semelhante a condição H-19 industrial, denominada rota R. Ligas com teores de zinco entre 1,14 a 2,17% foram fundidas e processadas segundo três diferentes rotas: na rota S, o recozimento da rota R foi substituído por solubilização antes da laminação a frio; nas rotas E3H e E6H, as tiras laminadas a frio foram envelhecidas em dois estágios: 121°C por três horas para as duas rotas, mais três horas para a rota E3H e seis para a rota EH a 163°. A tensão de escoamento (SIGMA IND E) e a resistência à tração (SIGMA IND T) para a rota R aumentaram da ordem de 18% e 19% respectivamente, com o aumento do teor de zinco, enquanto o alongamento (E) permaneceu em torno de 4,5%. As propriedades mecânicas (SIGMA IND E SIGMA T E ) AUMENTARAM EM TORNO DE 25%, 31% E 27%, respectivamente, para a rota S. Considerando concentrações aproximadamente iguais de zinco, não foram verificadas diferenças significativas para (SIGMA E SIGMA T), entre as rotas R E S, no entanto, a rota S apresentou alongamento médio maior que a rota R da ordem 44%. Os menores valores de (SIGMA IND E SIGMA IND T) e os maiores valores de E foram obtidos para a rota E6H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O sucesso das restaurações metálicas indiretas depende, dentre outros fatores, de uma união eficaz entre a estrutura metálica e o cimento dentário empregados. Sabe-se que os primers para metal atuam com comprovada eficácia na resistência adesiva dos cimentos resinosos às ligas nobres. Entretanto, pouco foi estudado sobre o efeito de tais materiais em ligas não nobres. O propósito deste estudo foi avaliar a eficácia de primers para metal na resistência ao cisalhamento da união entre cimentos resinosos e metais não nobres. Discos (9 mm de diâmetro e 3 mm de altura) foram fundidos em liga de NiCr (n=80) e em titânio comercialmente puro (Ti c.p.) (n=80) e foram incluídos em anel de PVC com resina acrílica quimicamente ativada. As superfícies dos discos foram regularizadas com lixas de carbeto de silício de granulação 320, 400 e 600 e jateadas com partículas de óxido de alumínio de 50 µm. Espécimes de cada metal foram divididos em quatro grupos (n=20). Uma matriz metálica bi-partida (5 mm de diâmetro interno e 2 mm de altura) foi posicionada na superfície do espécime. As áreas adesivas receberam um dos seguintes tratamentos: 1) Panavia F; 2) Alloy Primer e Panavia F; 3) Bistite DC e 4) Metaltite e Bistite DC. Para evitar a exposição dos cimentos à luz, estes foram espatulados e inseridos na matriz dentro de uma câmara de revelação radiográfica. Quarenta minutos após a confecção, os espécimes foram armazenados em água destilada a 37ºC por 24 horas e então termociclados (1.000 ciclos, 5ºC e 55ºC, 30 segundos cada banho). Após a termociclagem, os espécimes foram armazenados novamente nas mesmas condições descritas anteriormente por um período de 24 horas (n=10) ou de 6 meses (n=10) antes do ensaio de cisalhamento em uma máquina de ensaios mecânicos (Material Test System 810).