966 resultados para Legalization of regulation


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The FixL proteins are biological oxygen sensors that restrict the expression of specific genes to hypoxic conditions. FixL’s oxygen-detecting domain is a heme binding region that controls the activity of an attached histidine kinase. The FixL switch is regulated by binding of oxygen and other strong-field ligands. In the absence of bound ligand, the heme domain permits kinase activity. In the presence of bound ligand, this domain turns off kinase activity. Comparison of the structures of two forms of the Bradyrhizobium japonicum FixL heme domain, one in the “on” state without bound ligand and one in the “off” state with bound cyanide, reveals a mechanism of regulation by a heme that is distinct from the classical hemoglobin models. The close structural resemblance of the FixL heme domain to the photoactive yellow protein confirms the existence of a PAS structural motif but reveals the presence of an alternative regulatory gateway.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

N-type and P/Q-type Ca2+ channels are inhibited by neurotransmitters acting through G protein-coupled receptors in a membrane-delimited pathway involving Gβγ subunits. Inhibition is caused by a shift from an easily activated “willing” (W) state to a more-difficult-to-activate “reluctant” (R) state. This inhibition can be reversed by strong depolarization, resulting in prepulse facilitation, or by protein kinase C (PKC) phosphorylation. Comparison of regulation of N-type Ca2+ channels containing Cav2.2a α1 subunits and P/Q-type Ca2+ channels containing Cav2.1 α1 subunits revealed substantial differences. In the absence of G protein modulation, Cav2.1 channels containing Cavβ subunits were tonically in the W state, whereas Cav2.1 channels without β subunits and Cav2.2a channels with β subunits were tonically in the R state. Both Cav2.1 and Cav2.2a channels could be shifted back toward the W state by strong depolarization or PKC phosphorylation. Our results show that the R state and its modulation by prepulse facilitation, PKC phosphorylation, and Cavβ subunits are intrinsic properties of the Ca2+ channel itself in the absence of G protein modulation. A common allosteric model of G protein modulation of Ca2+-channel activity incorporating an intrinsic equilibrium between the W and R states of the α1 subunits and modulation of that equilibrium by G proteins, Cavβ subunits, membrane depolarization, and phosphorylation by PKC accommodates our findings. Such regulation will modulate transmission at synapses that use N-type and P/Q-type Ca2+ channels to initiate neurotransmitter release.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study we characterized phosphoribulokinase (PRK, EC 2.7.1.19) from the eukaryotic marine chromophyte Heterosigma carterae. Serial column chromatography resulted in approximately 300-fold purification of the enzyme. A polypeptide of 53 kD was identified as PRK by sequencing the amino terminus of the protein. This protein represents one of the largest composite monomers identified to date for any PRK. The native holoenzyme demonstrated by flow performance liquid chromatography a molecular mass of 214 ± 12.6 kD, suggesting a tetrameric structure for this catalyst. Because H. carterae PRK activity was insensitive to NADH but was stimulated by dithiothreitol, it appears that the enzyme may require a thioredoxin/ferredoxin rather than a metabolite mode of regulation. Kinetic analysis of this enzyme demonstrated Michaelis constant values of ribulose-5-phosphate (226 μm) and ATP (208 μm), respectively. In summary, H. carterae PRK is unique with respect to holoenzyme structure and function, and thus may represent an alternative evolutionary pathway in Calvin-cycle kinase development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two important signaling systems involved in the growth and development of plants, those triggered by the photoreceptor phytochrome and the hormone abscisic acid (ABA), are involved in the regulation of expression of the NPR1 gene of Lemna gibba. We previously demonstrated that phytochrome action mediates changes in ABA levels in L. gibba, correlating with changes in gene expression evoked by stimulation of the phytochrome system. We have now further characterized phytochrome- and ABA-mediated regulation of L. gibba NPR1 gene expression using a transient particle bombardment assay, demonstrating that regulatory elements controlling responses to both stimuli reside within 156 nucleotides upstream of the transcription start. Linker scan (LS) analysis of the region from −156 to −70 was used to identify two specific requisite and nonredundant cis-acting promoter elements between −143 to −135 (LS2) and −113 to −101 (LS5). Mutation of either of these elements resulted in a coordinate loss of regulation by phytochrome and ABA. This suggests that, unlike the L. gibba Lhcb2*1 promoter, in which phytochrome and ABA regulatory elements are separable, the phytochrome response of the L. gibba NPR1 gene can be attributed to alterations in ABA levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cell death in higher plants has been widely observed in predictable patterns throughout development and in response to pathogenic infection. Genetic, biochemical, and morphological evidence suggests that these cell deaths occur as active processes and can be defined formally as examples of programmed cell death (PCD). Intriguingly, plants have at least two types of PCD, an observation that is also true of PCD in animals [Schwartz, L. M., Smith, W.W., Jones, M. E. E. & Osborne, B. A. (1993) Proc. Natl. Acad. Sci. USA 90, 980-984]. Thus, in plants, PCD resembles either a common form of PCD seen in animals called apoptosis or it resembles a morphologically distinct form of cell death. The ubiquitous occurrence and necessity of PCD for plant development and defense suggest that the underlying mechanisms of regulation and execution of these processes merit further examination.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tet regulatory system in which doxycycline (dox) acts as an inducer of specifically engineered RNA polymerase II promoters was transferred into transgenic mice. Tight control and a broad range of regulation spanning up to five orders of magnitude were monitored dependent on the dox concentration in the water supply of the animals. Administration of dox rapidly induces the synthesis of the indicator enzyme luciferase whose activity rises over several orders of magnitude within the first 4 h in some organs. Induction is complete after 24 h in most organs analyzed. A comparable regulatory potential was revealed with the tet regulatory system where dox prevents transcription activation. Directing the synthesis of the tetracycline-controlled transactivator (tTA) to the liver led to highly specific regulation in hepatocytes where, in presence of dox, less than one molecule of luciferase was detected per cell. By contrast, a more than 10(5)-fold activation of the luciferase gene was observed in the absence of the antibiotic. This regulation was homogeneous throughout but stringently restricted to hepatocytes. These results demonstrate that both tetracycline-controlled transcriptional activation systems provide genetic switches that permit the quantitative control of gene activities in transgenic mice in a tissue-specific manner and, thus, suggest possibilities for the generation of a novel type of conditional mutants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the replication of human immunodeficiency virus type 1 (HIV-1), gag MA (matrix), a major structural protein of the virus, carries out opposing targeting functions. During virus assembly, gag MA is cotranslationally myristoylated, a modification required for membrane targeting of gag polyproteins. During virus infection, however, gag MA, by virtue of a nuclear targeting signal at its N terminus, facilitates the nuclear localization of viral DNA and establishment of the provirus. We now show that phosphorylation of gag MA on tyrosine and serine prior to and during virus infection facilitates its dissociation from the membrane, thus allowing it to translocate to the nucleus. Inhibition of gag MA phosphorylation either on tyrosine or on serine prevents gag MA-mediated nuclear targeting of viral nucleic acids and impairs virus infectivity. The requirement for gag MA phosphorylation in virus infection is underscored by our finding that a serine/threonine kinase is associated with virions of HIV-1. These results reveal a novel level of regulation of primate lentivirus infectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic resistance in plants to root diseases is rare, and agriculture depends instead on practices such as crop rotation and soil fumigation to control these diseases. "Induced suppression" is a natural phenomenon whereby a soil due to microbiological changes converts from conducive to suppressive to a soilborne pathogen during prolonged monoculture of the susceptible host. Our studies have focused on the wheat root disease "take-all," caused by the fungus Gaeumannomyces graminis var. tritici, and the role of bacteria in the wheat rhizosphere (rhizobacteria) in a well-documented induced suppression (take-all decline) that occurs in response to the disease and continued monoculture of wheat. The results summarized herein show that antibiotic production plays a significant role in both plant defense by and ecological competence of rhizobacteria. Production of phenazine and phloroglucinol antibiotics, as examples, account for most of the natural defense provided by fluorescent Pseudomonas strains isolated from among the diversity of rhizobacteria associated with take-all decline. There appear to be at least three levels of regulation of genes for antibiotic biosynthesis: environmental sensing, global regulation that ties antibiotic production to cellular metabolism, and regulatory loci linked to genes for pathway enzymes. Plant defense by rhizobacteria producing antibiotics on roots and as cohabitants with pathogens in infected tissues is analogous to defense by the plant's production of phytoalexins, even to the extent that an enzyme of the same chalcone/stilbene synthase family used to produce phytoalexins is used to produce 2,4-diacetylphloroglucinol. The defense strategy favored by selection pressure imposed on plants by soilborne pathogens may well be the ability of plants to support and respond to rhizosphere microorganisms antagonistic to these pathogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Acetylation and deacetylation at specific lysine (K) residues is mediated by histone acetylases (HATs) and deacetylases (HDACs), respectively. HATs and HDACs act on both histone and non-histone proteins, regulating various processes, including cardiac impulse propagation. Aim of the present work was to establish whether the function of the Ca2+ ATPase SERCA2, one of the major players in Ca2+ reuptake during excitation-contraction coupling in cardiac myocytes (CMs), could be modulated by direct K acetylation. Materials and methods: HL-1 atrial mouse cells (donated by Prof. Claycomb), zebrafish and Streptozotocin-induced diabetic rat CMs were treated with the pan-inhibitor of class I and II HDACs suberanilohydroxamic acid (SAHA) for 1.5 hour. Evaluation of SERCA2 acetylation was analyzed by co-immunoprecipitation. SERCA2 activity was measured on microsomes by pyruvate/NADH coupled reaction assay. SERCA2 mutants were obtained after cloning wild-type and mutated sequences into the pCDNA3 vector and transfected into HEK cells. Ca2+ transients in CMs (loading with Fluo3-AM, field stimulation, 0.5 Hz) and in transfected HEK cells (loading with FLUO-4, caffeine pulse) were recorded. Results: Co-Immunoprecipitation experiments performed on HL-1 cells demonstrated a significant increase in the acetylation of SERCA2 after SAHA-treatment (2.5 µM, n=3). This was associated with an increase in SERCA2 activity in microsomes obtained from HL-1 cells, after SAHA exposure (n=5). Accordingly, SAHA-treatment significantly shortened the Ca2+ reuptake time of adult zebrafish CMs. Further, SAHA 2.5 nM restored to control values the recovery time of Ca2+ transients decay in diabetic rat CMs. HDAC inhibition also improved contraction parameters, such as fraction of shortening, and increased pump activity in microsomes isolated from diabetic CMs (n=4). Notably, the K464, identified by bioinformatic tools as the most probable acetylation site on human SERCA2a, was mutated into Glutamine (Q) or Arginine (R) mimicking acetylation and deacetylation respectively. Measurements of Ca2+ transients in HEK cells revealed that the substitution of K464 with R significantly delayed the transient recovery time, thus indicating that deacetylation has a negative impact on SERCA2 function. Conclusions: Our results indicate that SERCA2 function can be improved by pro-acetylation interventions and that this mechanism of regulation is conserved among species. Therefore, the present work provides the basis to open the search for novel pharmacological tools able to specifically improve SERCA2 activity in diseases where its expression and/or function is impaired, such as diabetic cardiomyopathy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The haloarchaeon Haloferax mediterranei is able to grow in a defined culture media not only in the presence of inorganic nitrogen salt but also with amino acid as the sole nitrogen source. Assimilatory nitrate and nitrite reductases, respectively, catalyze the first and second reactions. The genes involved in this process are nasA, which encodes nitrate reductase and is found within the operon nasABC, and nasD, which encodes nitrite reductase. These genes are subjected to transcriptional regulation, being repressed in the presence of ammonium and induced with either nitrate or nitrite. This type of regulation has also been described when the amino acids are used as nitrogen source in the minimal media. Furthermore, it has been observed that the microorganism growth depends on nitrogen source, obtaining the lowest growth rate in the presence of nitrate and aspartate. In this paper, we present the results of a comparative study of microorganism growth and transcriptomic analysis of the operon nasABC and gene nasD in different nitrogen sources. The results are the first ever produced in relation to amino acids as nitrogen sources within the Halobacteriaceae family.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There has been very little research that has studied the capacities that can be fostered to mitigate the risk for involvement in electronic bullying or victimization and almost no research examining positive electronic behavior. The primary goal of this dissertation was to use the General Aggression Model and Anxious Apprehension Model of Trauma to explore the underlying cognitive, emotional, and self-regulation processes that are related to electronic bullying, victimization, and prosocial behavior. In Study 1, we explored several potential interpretations of the General Aggression Model that would accurately describe the relationship that electronic self-conscious appraisal, cognitive reappraisal, and activational control may have with electronic bullying and victimization. In Study 2, we used the Anxious Apprehension Model of Trauma to explore rejection cognitions as the mediator of the relationships among emotionality (emotionality, shame, state emotion responses, and physiological arousal) and electronic bullying and victimization using structural equation modelling. In addition, we explored the role of rejection cognitions in mediating the relationship of moral disengagement with electronic bullying. In Study 3, we examined predictors of electronic prosocial behavior, such as bullying, victimization, time online, electronic proficiency, electronic self-conscious appraisals, emotionality, and self-regulation. All three studies supported the General Aggression Model as a framework to guide the study of electronic behavior, and suggest the importance of cognitive, emotional, and behavioral means of regulation in shaping electronic behavior. In addition, each study has implications for the development of high quality electronic bullying prevention and intervention research.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the Introduction. The pharmaceutical sector inquiry carried out by the European Commission in 2008 provides a useful framework for assessing the relationship between the patent system on the one hand and competition policy and law on the other hand. The pharmaceutical market is not only specifically regulated. It is also influenced by the special characteristics of the patent system which enables pharmaceutical companies engaged in research activities to enter into additional arrangements to cope with the competitive pressures of early patent application and the delays in drug approval. Patents appear difficult to reconcile with the need for sufficient and adequate access to medicines, which is why competition expectations imposed on the pharmaceutical sector are very high. The patent system and competition law are interacting components of the market, into which they must both be integrated. This can result in competition law taking a very strict view on the pharmaceutical industry by establishing strict functional performance standards for the reliance on intellectual property rights protection granted by patent law. This is in particular because in this sector the potential welfare losses are not likely to be of only monetary nature. In brief, the more inefficiencies the patent system produces, the greater the risk of an expansive application of competition law in this field. The aim of the present study is to offer a critical and objective view on the use or abuse of patents and defensive strategies in the pharmaceutical industry. It shall also seek to establish whether patents as presently regulated offer an appropriate degree of protection of intellectual property held by the economic operators in the pharmaceutical sector and whether there is a need or, for that matter, scope for improvement. A useful starting point for the present study is provided by the pharmaceutical sector competition inquiry (hereafter “the sector inquiry”) carried out by the European Commission during the first half of 2008. On 8 July 2008, the Commission adopted its Final Report pursuant to Article 17 of Regulation 1/2003 EC, revealing a series of “antitrust shortcomings” that would require further investigation1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

From the Introduction. By virtue of Council Regulation No. 1/2003, as of 1st May 2004 the full application of EC competition law will be entrusted to national competition authorities (hereinafter NCAs) and national courts. The bold reform of EC competition law enforcement adheres to the system of executive federalism1 which characterises the EC legal system. The repartition of competences within the Community allocates implementation of Community law mainly at Member States level. Pursuant to Article 10 EC, they are responsible for the implementation of the measures which have been adopted at Community level for the achievement of the objectives specified in the EC Treaty. Consequently, the attainment of the Community objectives depends very much upon the cooperation of national authorities, which act in accordance with their own national procedural rules.2 The various national procedural rules present themselves as conduits through which Community law is implemented and enforced. While as a rule Community law is not designed to alter national procedural rules, the Community legal order cannot afford to leave national procedural rules untouched when they are liable to hamper the effective application of Community law....For reason of space, this contribution intends only to highlight some aspects of Regulation No. 1/2003 with regard to which general principles of Community law are able to condition national procedural rules.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction. One frequently hears the question posed in the title to this report, but there is little systematic analytical literature on the issue. Fragmented evidence or anecdotes dominate debates among EU regulatory decision-makers and in European business, insofar as there is a genuine debate at all. This CEPS Special Report focuses on the multi-faceted, ambiguous and complex relationship between (EU) regulation and innovation in the economy, and discusses the innovation-enhancing potential of certain regulatory approaches as well as factors that tend to reduce incentives to innovate. It adopts an 'ecosystem' approach to both regulation and innovation, and study the interactions between the two ecosystems. This general analysis and survey are complemented by seven case studies of EU regulation enabling and disabling innovation, two horizontal and five sectoral ones. The case studies are preceded by a broader contextual analysis of trends in EU regulation over the last three decades. These trends show the significant transformation of the nature as well as improvement of the quality of EU regulation, largely in the deepened internal market, which tend to have a favourable and lasting effect on the rate of innovation in the EU (other things being equal). Among the findings include the following: Regulation can at times be a powerful stimulus to innovation. EU regulation matters at all stages of the innovation process. Different types of regulation can be identified in terms of innovation impact: general or horizontal, innovation-specific and sector-specific regulation. More prescriptive regulation tends to hamper innovative activity, whereas the more flexible EU regulation is, the better innovation can be stimulated. Lower compliance and red-tape burdens have a positive effect on innovation. The authors recommend incorporating a specific test on innovation impacts in the ex-ante impact assessment of EU legislation as well as in ex-post evaluation. There is ample potential for fostering innovation by reviewing the EU regulatory acquis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The regulation of breathing.--The readjustments of regulation in acclimatisation and disease.--Regulation of the environment, internal and external.--Organic regulation as the essence of life. Inadequacy of mechanistic and vitalistic conceptions.