983 resultados para Layer thickness
Resumo:
Objectives. To examine the effect of prolonged application time on the early and 3-year resin-dentin microtensile bond strength. Methods. Water/ethanol (Single Bond [SB]) and acetone-based systems (One Step [OS]) were employed. A flat superficial dentin surface was exposed in third human molars by wet abrasion. The adhesives were applied to a delimited area of 52 mm(2) on wet surfaces, for 40, 90, 150 and 300s. Four teeth were assigned for each experimental condition. Composite build-ups were constructed incrementally After water storage at 37 degrees C for 24 h, teeth were sectioned to obtain sticks with cross-sectional areas of 0.8 mm(2) to be tested in tension (0.5 mm/min) either immediately (IM) or after 3 years (3Y) of water storage. The microtensile bond strength (mu TBS) values were analyzed by two way repeated measures ANOVA and Tukey`s test (alpha = 0.05). Results. The 90- and 150-s groups achieved the highest IM mu TBS for OS (p < 0.01). For SB, the highest IM mu TBS values were observed after 300-s application (p < 0.01). Significant decreases in mu TBS were observed for OS in the 40- and 90-s groups after 3Y, except for the 150-s group. With regard to SB, after 3Y significant drops in mu TBS values were observed for the 40- and 150-s groups, except for the 300-s group. Significance. Prolonged application times can increase the immediate LTBS of two-step etch-and-rinse adhesive systems and make the adhesive layer more stable over time. (c) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective. The goal of this paper is to undertake a literature search collecting all dentin bond strength data obtained for six adhesives with four tests ( shear, microshear, tensile and microtensile) and to critically analyze the results with respect to average bond strength, coefficient of variation, mode of failure and product ranking. Method. A PubMed search was carried out for the years between 1998 and 2009 identifying publications on bond strength measurements of resin composite to dentin using four tests: shear, tensile, microshear and microtensile. The six adhesive resins were selected covering three step systems ( OptiBond FL, Scotch Bond Multi-Purpose Plus), two-step (Prime & Bond NT, Single Bond, Clear. l SE Bond) and one step (Adper Prompt L Pop). Results. Pooling results from 147 references showed an ongoing high scatter in the bond strength data regardless which adhesive and which bond test was used. Coefficients of variation remained high (20-50%) even with the microbond test. The reported modes of failure for all tests still included high number of cohesive failures. The ranking seemed to be dependant on the test used. Significance. The scatter in dentin bond strength data remains regardless which test is used confirming Finite Element Analysis predicting non-uniform stress distributions due to a number of geometrical, loading, material properties and specimens preparation variables. This reopens the question whether, an interfacial fracture mechanics approach to analyze the dentin - adhesive bond is not more appropriate for obtaining better agreement among dentin bond related papers. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objective: To examine the morphological, early and long-term microtensile bond strengths (mu TBS) of one-step self-etch systems to unground and ground enamel. Materials and Methods: Resin composite (Filtek Z250) buildups were bonded to the buccal and lingual enamel surfaces (unground, bur-cut or SiC-roughened enamel) of third molars after adhesive application using the following adhesives: Clearfil S(3) Bond (CS3); Adper Prompt L-Pop (ADP); iBond (iB) and, as the control, Clearfil SE Bond (CSE). Six tooth halves were assigned for each condition. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.8 mm(2)) and subjected to pTBS (0.5 mm/min) either immediately (IM) or after six (6M) or 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). Surface conditioning was observed under scanning electron microscopy (SEM). Results: The mu TBS in the Si-C paper and diamond bur groups were similar and higher than the unground group. No significant difference was observed among the different storage periods, except for CS3, which showed an increase in the pTBS after 12M. The etching pattern was more retentive on ground enamel. Conclusions: One-step self-etch adhesives showed higher bond strengths on ground enamel and no reductions in resin-enamel bonds were observed after 12M of water storage.
Resumo:
This study examined the early and long-term microtensile bond strengths (mu TBS) and interfacial enamel gap formation (IGW) of two-step selfetch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm(2)) and subjected to mu TBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). No gap formation was observed in any experimental condition. The mu TBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.
Resumo:
Objectives: To evaluate the effect of adhesive temperature on the resin-dentin bond strength (mu TBS), nanoleakage (NL), adhesive layer thickness (AL), and degree of conversion (DC) of ethanol/water- (SB) and acetone-based (PB) etch-and-rinse adhesive systems. Methods: The bottles of the two adhesives were kept at each temperature (5 degrees C, 20 degrees C, 37 degrees C, and 50 degrees C) for 2 hours before application to demineralized dentin surfaces of 40 molars. Specimens were prepared for mu TBS testing. Bonded sticks (0.8 mm(2)) were tested under tension (0.5 mm/min). Three bonded sticks from each tooth were immersed in silver nitrate and analyzed by scanning electron microscopy. The DC of the adhesives was evaluated by Fourier transformed infrared spectroscopy. Results: Lower mu TBS was observed for PB at 50 degrees C. For SB, the mu TBS values were similar for all temperatures. DC was higher at 50 degrees C for PB. Higher NL and thicker AL were observed for both adhesives in the 5 degrees C and 20 degrees C groups compared to the 37 degrees C and 50 degrees C groups. The higher temperatures (37 degrees C or 50 degrees C) reduced the number of pores within the adhesive layer of both adhesive systems. Conclusions: It could be useful to use an ethanol/water-based adhesive at 37 degrees C or 50 degrees C and an acetone-based adhesive at 37 degrees C to improve adhesive performance.
Resumo:
A simple method to characterize the micro and mesoporous carbon media is discussed. In this method, the overall adsorption quantity is the sum of capacities of all pores (slit shape is assumed), in each of which the process of adsorption occurs in two sequential steps: the multi-layering followed by pore filling steps. The critical factor in these two steps is the enhancement of the pressure of occluded 'free' molecules in the pore as well as the enhancement of the adsorption layer thickness. Both of these enhancements are due to the overlapping of the potential fields contributed by the two opposite walls. The classical BET and modified Kelvin equations are assumed to be applicable for the two steps mentioned above, with the allowance for the enhanced pore pressure, the enhanced adsorption energy and the enhanced BET constant,all of which vary with pore width. The method is then applied to data of many carbon samples of different sources to derive their respective pore size distributions, which are compared with those obtained from DFT analysis. Similar pore size distributions (PSDs) are observed although our method gives sharper distribution. Furthermore, we use our theory to analyze adsorption data of nitrogen at 77 K and that of benzene at 303 K (ambient temperature). The PSDs derived from these two different probe molecules are similar, with some small differences that could be attributed to the molecular properties, such as the collision diameter. Permeation characteristics of sub-critical fluids are also discussed in this paper. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.
Resumo:
This article reports on the structural, electronic, and optical properties of boron-doped hydrogenated nanocrystalline silicon (nc-Si: H) thin films. The films were deposited by plasma-enhanced chemical vapour deposition (PECVD) at a substrate temperature of 150 degrees C. Crystalline volume fraction and dark conductivity of the films were determined as a function of trimethylboron-to-silane flow ratio. Optical constants of doped and undoped nc-Si: H were obtained from transmission and reflection spectra. By employing p(+) nc-Si: H as a window layer combined with a p' a-SiC buffer layer, a-Si: H-based p-p'-i-n solar cells on ZnO:Al-coated glass substrates were fabricated. Device characteristics were obtained from current-voltage and spectral-response measurements. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
This letter reports a near-ultraviolet/visible/near-infrared n(+)-n-i-delta(i)-p photodiode with an absorber comprising a nanocrystalline silicon n layer and a hydrogenated amorphous silicon i layer. Device modeling reveals that the dominant source of reverse dark current is deep defect states in the n layer, and its magnitude is controlled by the i layer thickness. The photodiode with the 900/400 nm thick n-i layers exhibits a reverse dark current density of 3nA/cm(2) at -1V. Donor concentration and diffusion length of holes in the n layer are estimated from the capacitance-voltage characteristics and from the bias dependence of long-wavelength response, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660725]
Resumo:
One of the most effective ways of controlling vibrations in plate or beam structures is by means of constrained viscoelastic damping treatments. Contrary to the unconstrained configuration, the design of constrained and integrated layer damping treatments is multifaceted because the thickness of the viscoelastic layer acts distinctly on the two main counterparts of the strain energy the volume of viscoelastic material and the shear strain field. In this work, a parametric study is performed exploring the effect that the design parameters, namely the thickness/length ratio, constraining layer thickness, material modulus, natural mode and boundary conditions have on these two counterparts and subsequently, on the treatment efficiency. This paper presents five parametric studies, namely, the thickness/length ratio, the constraining layer thickness, material properties, natural mode and boundary conditions. The results obtained evidence an interesting effect when dealing with very thin viscoelastic layers that contradicts the standard treatment efficiency vs. layer thickness relation; hence, the potential optimisation of constrained and integrated viscoelastic treatments through the use of properly designed thin multilayer configurations is justified. This work presents a dimensionless analysis and provides useful general guidelines for the efficient design of constrained and integrated damping treatments based on single or multi-layer configurations. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.
Resumo:
A multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. Constrained optimization is conducted for maximization of modal loss factors and minimization of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and material and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms.
Resumo:
This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.
Resumo:
In this work, hafnium aluminum oxide (HfAlO) thin films were deposited by ion beam sputtering deposition technique on Si substrate. The presence of oxygen vacancies in the HfAlOx layer deposited in oxygen deficient environment is evidenced from the photoluminescence spectra. Furthermore, HfAlO(oxygen rich)/HfAlOx(oxygen poor) bilayer structures exhibit multilevel resistive switching (RS), and the switching ratio becomes more prominent with increasing the HfAlO layer thickness. The bilayer structure with HfAlO/HfAlOx thickness of 30/40 nm displays the enhanced multilevel resistive switching characteristics, where the high resistance state/ intermediate resistance state (IRS) and IRS/low resistance state resistance ratios are 102 and 5 105 , respectively. The switching mechanisms in the bilayer structures were investigated by the temperature dependence of the three resistance states. This study revealed that the multilevel RS is attributed to the coupling of ionic conduction and the metallic conduction, being the first associated to the formation and rupture of conductive filaments related to oxygen vacancies and the second with the formation of a metallic filament. Moreover, the bilayer structures exhibit good endurance and stability in time.