976 resultados para Laser-produced plasma


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440degreesC,using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 degreesC is needed. The diameters of Si nanowires range from 15 to 100 urn. The structure morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently a new method for simulating the thermal loading on pistons of diesel engines was reported. The spatially shaped high power laser is employed as the heat source, and some preliminary experimental and numerical work was carried out. In this paper, a further effort was made to extend this simulation method to some other important engine parts such as cylinder heads. The incident Gaussian beam was transformed into concentric multi-circular patterns of specific intensity distributions, with the aid of diffractive optical elements (DOEs). By incorporating the appropriate repetitive laser pulses, the designed transient temperature fields and thermal loadings in the engine parts could be simulated. Thermal-structural numerical models for pistons and cylinder heads were built to predict the transient temperature and thermal stress. The models were also employed to find the optimal intensity distributions of the transformed laser beam that could produce the target transient temperature fields. Comparison of experimental and numerical results demonstrated that this systematic approach is effective in simulating the thermal loading on the engine parts. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser-induced fragmentation of C-60 has been studied using a time-of-flight mass spectrometric technique. The average kinetic energies of fragment ions C-n(+) (n <= 58) have been extracted from the measured full width at half maximum (FWHM) of ion beam profiles. The primary formation mechanism of small fragment ion C-n(+) (n < 30) is assumed to be a two-step fragmentation process: C60 sequential decay to unstable C-30(+) ion and the binary fission of C-30(+). Considering a second photo absorption process in the later part of laser pulse duration, good agreement is achieved between experiment and theoretical description of photoion formation. (C) 2009 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A LIBS setup was built in the Institute of Modern Physics. In our experiments, LIBS spectra produced by infrared radiation of Nd : YAG nanosecond laser with 100 and 150 mJ pulse energy, respectively, were measured by fiber optic spectrometer in the ranges of 230-430 run and 430-1080 nm with a delay time of 1.7 and gate width of 2 ms for potato and lily samples prepared by vacuum freeze-dried technique. The lines from different metal elements such as K, Ca, Na, Mg, Fe, Al, Mn and Ti, and nonmetal elements such as C, N, O and H, and some molecular spectra from C-2, CaO, and CN were identified according to their wavelengths. The relative content of the six microelements, Ca, Na, K, Fe, Al, and Mg in the samples were analyzed according to their representative line intensities. By comparison we found that there are higher relative content of Ca and Na in lily samples and higher relative content of Mg in potato samples. The experimental results showed that LIBS technique is a fast and effective means for measuring and comparing the contents of microelements in plant samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Laser-induced breakdown plasma is produced by using Q-switched Nd: YAG laser operating at 532 nm, which interacts with the Al alloy sample target in air. The spectral lines in the 230-440 nm wavelength range have been identified, and based on the calibration-free method, the mass concentration of Al alloy are obtained, which is in good agreement with the standard value of the sample.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report for the first time the proper conditions to observe Autler-Townes splitting (ac-Stark splitting) from vibrationally coherent states belonging to the different electronic terms of a diatomic molecule. Wave packet dynamics simulations demonstrate that such a process is feasible by multiphoton resonance ionization of the molecule Na-2 with a single ultrashort intense laser pulse. With the ultrahigh time resolution of a femtosecond laser pulse, one can directly measure the absolute value of the transition dipole moment between any kinds of molecular states by this kind of Autler-Townes splitting, which is a function of the internuclear distance R.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel physical phenomenon has been observed following the interaction of an intense (10(19) W/cm(2)) laser pulse with an underdense plasma. Long-lived, macroscopic bubblelike structures have been detected through the deflection that the associated electric charge separation causes in a proton probe beam. These structures are interpreted as the remnants of a cloud of relativistic solitons generated in the plasma by the ultraintense laser pulse. This interpretation is supported by an analytical study of the soliton cloud evolution, by particle-in-cell simulations, and by a reconstruction of the proton-beam deflection.