887 resultados para Kernel polynomials
Resumo:
Probabilistic graphical models are a huge research field in artificial intelligence nowadays. The scope of this work is the study of directed graphical models for the representation of discrete distributions. Two of the main research topics related to this area focus on performing inference over graphical models and on learning graphical models from data. Traditionally, the inference process and the learning process have been treated separately, but given that the learned models structure marks the inference complexity, this kind of strategies will sometimes produce very inefficient models. With the purpose of learning thinner models, in this master thesis we propose a new model for the representation of network polynomials, which we call polynomial trees. Polynomial trees are a complementary representation for Bayesian networks that allows an efficient evaluation of the inference complexity and provides a framework for exact inference. We also propose a set of methods for the incremental compilation of polynomial trees and an algorithm for learning polynomial trees from data using a greedy score+search method that includes the inference complexity as a penalization in the scoring function.
Resumo:
Mixtures of polynomials (MoPs) are a non-parametric density estimation technique especially designed for hybrid Bayesian networks with continuous and discrete variables. Algorithms to learn one- and multi-dimensional (marginal) MoPs from data have recently been proposed. In this paper we introduce two methods for learning MoP approximations of conditional densities from data. Both approaches are based on learning MoP approximations of the joint density and the marginal density of the conditioning variables, but they differ as to how the MoP approximation of the quotient of the two densities is found. We illustrate and study the methods using data sampled from known parametric distributions, and we demonstrate their applicability by learning models based on real neuroscience data. Finally, we compare the performance of the proposed methods with an approach for learning mixtures of truncated basis functions (MoTBFs). The empirical results show that the proposed methods generally yield models that are comparable to or significantly better than those found using the MoTBF-based method.
Resumo:
El desarrollo de bioqueroseno de diferentes orígenes y su uso creciente, hacen necesario el estudio de la compatibilidad estos nuevos combustibles con los materiales y recubrimientos con los que se encuentra en contacto. Por tanto, el presente proyecto estudia la compatibilidad de los bioquerosenos mezclados en diferentes proporciones con queroseno mineral, para evaluar posteriormente su compatibilidad con diferentes polímeros y composites presentes en la estructura de un avión.Currently there is a big interest to increase the sources of alternative fuels for aviation to get a reduction of their carbon footprint and the deep energetic dependence from fossil fuels of different countries. Although there are studies about how to produce this alternative fuel and how to accomplish the standards for a good performance in the aircraft turbines, there are no studies about how these fuels could affect the different materials of airplanes. In this context this work describes the compatibility of biokerosene blends of coconut, babassu and palm kernel with commercial Jet A-1 testing airplane polymeric materials, metals and composites. As a conclusion, all material samples show a good compatibility with the fuel blends tested.
Resumo:
The seismic hazard of the Iberian Peninsula is analysed using a nonparametric methodology based on statistical kernel functions; the activity rate is derived from the catalogue data, both its spatial dependence (without a seismogenic zonation) and its magnitude dependence (without using Gutenberg–Richter's relationship). The catalogue is that of the Instituto Geográfico Nacional, supplemented with other catalogues around the periphery; the quantification of events has been homogenised and spatially or temporally interrelated events have been suppressed to assume a Poisson process. The activity rate is determined by the kernel function, the bandwidth and the effective periods. The resulting rate is compared with that produced using Gutenberg–Richter statistics and a zoned approach. Three attenuation relationships have been employed, one for deep sources and two for shallower events, depending on whether their magnitude was above or below 5. The results are presented as seismic hazard maps for different spectral frequencies and for return periods of 475 and 2475 yr, which allows constructing uniform hazard spectra
Resumo:
It is known that some orthogonal systems are mapped onto other orthogonal systems by the Fourier transform. In this article we introduce a finite class of orthogonal functions, which is the Fourier transform of Routh-Romanovski orthogonal polynomials, and obtain its orthogonality relation using Parseval identity.
Resumo:
In this paper we present a recurrent procedure to solve an inversion problem for monic bivariate Krawtchouk polynomials written in vector column form, giving its solution explicitly. As a by-product, a general connection problem between two vector column of monic bivariate Krawtchouk families is also explicitly solved. Moreover, in the non monic case and also for Krawtchouk families, several expansion formulas are given, but for polynomials written in scalar form.
Resumo:
The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent “accurately” harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in “accurate” reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Padé approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.
Resumo:
We outline here a proof that a certain rational function Cn(q, t), which has come to be known as the “q, t-Catalan,” is in fact a polynomial with positive integer coefficients. This has been an open problem since 1994. Because Cn(q, t) evaluates to the Catalan number at t = q = 1, it has also been an open problem to find a pair of statistics a, b on the collection
Resumo:
A new method for fitting a series of Zernike polynomials to point clouds defined over connected domains of arbitrary shape defined within the unit circle is presented in this work. The method is based on the application of machine learning fitting techniques by constructing an extended training set in order to ensure the smooth variation of local curvature over the whole domain. Therefore this technique is best suited for fitting points corresponding to ophthalmic lenses surfaces, particularly progressive power ones, in non-regular domains. We have tested our method by fitting numerical and real surfaces reaching an accuracy of 1 micron in elevation and 0.1 D in local curvature in agreement with the customary tolerances in the ophthalmic manufacturing industry.
Resumo:
Este trabalho analisa os principais métodos ágeis utilizados em empresas startup, como scrum, extreme programming, kanban e lean, isolando suas práticas e mapeando-as no Kernel do SEMAT para escolher os elementos essenciais da engenharia de software que estão relacionados a cada prática de forma independente. Foram identificadas 34 práticas que foram reduzidas a um conjunto de 26 pelas similaridades. Um questionário foi desenvolvido e aplicado no ambiente de startups de software para a avaliação do grau de utilização de cada determinada prática. Através das respostas obtidas foi possível a identificação de um subconjunto de práticas com utilização acima de 60% onde todos os elementos essenciais da engenharia de software são atendidos, formando um conjunto mínimo de práticas capazes de sustentar este tipo específico de ambiente.
Resumo:
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a once-punctured surface of any genus into SL(2, C), for any possible holonomy around the puncture. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behavior of the E-polynomial under fibrations.
Resumo:
As the user base of the Internet has grown tremendously, the need for secure services has increased accordingly. Most secure protocols, in digital business and other fields, use a combination of symmetric and asymmetric cryptography, random generators and hash functions in order to achieve confidentiality, integrity, and authentication. Our proposal is an integral security kernel based on a powerful mathematical scheme from which all of these cryptographic facilities can be derived. The kernel requires very little resources and has the flexibility of being able to trade off speed, memory or security; therefore, it can be efficiently implemented in a wide spectrum of platforms and applications, either software, hardware or low cost devices. Additionally, the primitives are comparable in security and speed to well known standards.
Resumo:
This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions of fractality associated with a nonlattice fractal string is true in the important special case of a generic nonlattice self-similar string, but in general is false. The proof and the counterexample of this have been given by virtue of a result on exponential polynomials P(z), with real frequencies linearly independent over the rationals, that establishes a bound for the number of gaps of RP, the closure of the set of the real projections of its zeros, and the reason for which these gaps are produced.
Resumo:
This paper shows, by means of Kronecker’s theorem, the existence of infinitely many privileged regions called r -rectangles (rectangles with two semicircles of small radius r ) in the critical strip of each function Ln(z):= 1−∑nk=2kz , n≥2 , containing exactly [Tlogn2π]+1 zeros of Ln(z) , where T is the height of the r -rectangle and [⋅] represents the integer part.
Resumo:
Purpose: In this paper the authors aim to show the advantages of using the decomposition method introduced by Adomian to solve Emden's equation, a classical non‐linear equation that appears in the study of the thermal behaviour of a spherical cloud and of the gravitational potential of a polytropic fluid at hydrostatic equilibrium. Design/methodology/approach: In their work, the authors first review Emden's equation and its possible solutions using the Frobenius and power series methods; then, Adomian polynomials are introduced. Afterwards, Emden's equation is solved using Adomian's decomposition method and, finally, they conclude with a comparison of the solution given by Adomian's method with the solution obtained by the other methods, for certain cases where the exact solution is known. Findings: Solving Emden's equation for n in the interval [0, 5] is very interesting for several scientific applications, such as astronomy. However, the exact solution is known only for n=0, n=1 and n=5. The experiments show that Adomian's method achieves an approximate solution which overlaps with the exact solution when n=0, and that coincides with the Taylor expansion of the exact solutions for n=1 and n=5. As a result, the authors obtained quite satisfactory results from their proposal. Originality/value: The main classical methods for obtaining approximate solutions of Emden's equation have serious computational drawbacks. The authors make a new, efficient numerical implementation for solving this equation, constructing iteratively the Adomian polynomials, which leads to a solution of Emden's equation that extends the range of variation of parameter n compared to the solutions given by both the Frobenius and the power series methods.