960 resultados para Inheritance of regularity
Resumo:
Neuropsychiatric complications are common in patients with chronic hepatitis C undergoing treatment with interferon alpha. These side effects include alterations of mood, cognition, and neuroendocrine function and are unpredictable. In a number of neurological disorders characterized by neuropsychiatric symptoms and cognitive dysfunction, inheritance of an apolipoprotein E (APOE) epsilon4 allele is associated with adverse neuropsychiatric outcomes. The authors present evidence that the APOE genotype may influence a patient's neuropsychiatric response to interferon alpha treatment. The inheritance of APOE genotypes was examined in 110 patients with chronic hepatitis C treated with interferon alpha. A retrospective investigation was conducted by assessing the rates of psychiatric referral and neuropsychiatric symptoms experienced during treatment along with other complaints indicating psychological distress. A highly statistically significant association was seen between APOE genotypes and interferon-induced neuropsychiatric symptoms. Patients with an epsilon4 allele were more likely to be referred to a psychiatrist and had more neuropsychiatric symptoms during antiviral treatment than those without an epsilon4 allele. Additionally, patients with an epsilon4 allele were more likely to experience irritability or anger and anxiety or other mood symptoms. These data demonstrate that an individual's APOE genotype may influence the neuropsychiatric response to antiviral therapy with interferon alpha. Prospective studies evaluating the importance of APOE in susceptibility to interferon alpha-induced neuropsychiatric complications are needed. Moreover, pathways involving APOE should be considered in understanding the pathophysiology of interferon alpha-induced neuropsychiatric complications.
Resumo:
Genetic segregation experiments with plant species are commonly used for understanding the inheritance of traits. A basic assumption in these experiments is that each gamete developed from megasporogenesis has an equal chance of fusing with a gamete developed from microsporogenesis, and every zygote formed has an equal chance of survival. If gametic and/or zygotic selection occurs whereby certain gametes or zygotic combinations have a reduced chance of survival, progeny distributions are skewed and are said to exhibit segregation distortion. In this study, inheritance data are presented for the trait seed testa color segregating in large populations (more than 200 individuals) derived from closely related mungbean (Vigna radiata L. Wilcek) taxa. Segregation ratios suggested complex inheritance, including dominant and recessive epistasis. However, this genetic model was rejected in favor of a single-gene model based on evidence of segregation distortion provided by molecular marker data. The segregation distortion occurred after each generation of self-pollination from F-1 thru F-7 resulting in F-7 phenotypic frequencies of 151:56 instead of the expected 103.5:103.5. This study highlights the value of molecular markers for understanding the inheritance of a simply inherited trait influenced by segregation distortion.
Resumo:
A partir do estudo de caso de uma unidade privada de educação infantil, a presente pesquisa pretendeu investigar, através das expectativas dos pais diante da educação infantil, a influência da herança cultural familiar na trajetória escolar da criança. O interesse teórico de uma pesquisa empírica sobre esse universo é atestado pelo fato de que, conforme Pierre Bourdieu, a valorização e a compreensão da escola, já nos primeiros anos de vida da criança são comuns entre as famílias que possuem um maior nível de escolarização e que conseqüentemente começam a traçar desde cedo a trajetória escolar de seus filhos. Assim, ao estudarmos os pais de alunos de uma unidade privada de educação infantil, estaremos abordando, sobretudo, as expectativas educacionais de famílias da classe média. Apoiados em algumas idéias básicas sobre a conexão entre capital cultural e estratégias educacionais apresentados por Bourdieu, trabalhamos com a hipótese de que as diferentes categorias sociais são desigualmente predispostas a compreender e a valorizar a escolarização em geral, e que este fato está diretamente relacionado ao capital cultural familiar. De acordo com o autor é o volume e o tipo de capital (econômico, social e cultural) que o indivíduo possui que irá definir sua posição na hierarquia social, bem como suas expectativas diante da escola. Nota-se, então, que a cultura de um modo geral opera como um patrimônio de diferenciação de classe.(AU)
Resumo:
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. The simulation method is explained in detail. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling. Despite this unrealistic behavior the error maybe small enough to be accepted for specific applications. These results is a starting point start for achieving better results of inverse musculoskeletal simulations from a numerical point of view.
Resumo:
This study aimed to assess the genetic inheritance, determine the better DNA isolation protocol for this species and to identify molecular markers associated with the Wild Poinsettia (Euphorbia heterophylla L.) resistance ALS- and PROTOX- inhibiting herbicides and. The genetic inheritance of resistance was determined from crosses between E. heterophylla biotypes susceptible (S) and resistant (R), backcrosses and F2 generation. The complete dominance of resistance was confirmed with dose response curves. Ten adjusted methods for DNA isolation described in the literature were tested. The specific primers for ALS and PROTOX genes were designed from the consensus DNA sequence of these genes, obtained by aligning the gene sequences of the species Manihot esculenta and Ricinus communis L. Additionally, it was assessed the transferability of twenty SSR (simple sequence repeat) markers designed for Manihot esculenta, because among the species of Euphorbiaceae with more developed SSRs markers, because it is the closest relative phylogenetic species of E. heterophylla. Regarding genetic inheritance, the frequencies observed in the F1, F2, RCs and RCr did not differ significantly from the expected frequencies for a trait controlled by two dominant genes for multiple resistance and a single dominant gene for simple resistance to ALS- and PROTOX-inhibiting herbicides. The similar levels of resistance to dosage up to 2000 g i.a. ha-1 of fomesafen and dosage up to 800 g i.a. ha-1 of imazethapyr observed in F1 (heterozygous) and homozygous R biotype confirm the complete dominance of resistance to PROTOX- and ALS-inhibiting herbicides, respectively. The 0.2%BME protocol allowed the isolation of 7,083 ng μL-1 DNA, significantly (P=0.05) higher than other methods. Co-isolation of phenolic compounds was observed in FENOL and 3%BME+TB methods, but the addition of polyvinylpyrrolidone (PVP40) in the protocol extraction buffer 3%BME+TA solved this problem. The primers designed for ALS and PROTOX genes amplified but not showed no visible polymorphism in agarose gel between the S and R biotypes of E. heterophylla. Regarding the SSR transferability, ten markers were transferred to E. heterophylla, however, these six primers showed polymorphism among S and R biotypes.
Resumo:
Retinitis pigmentosa 2 (RP2) gene is responsible for up to 20% of X-linked retinitis pigmentosa, a severe heterogeneous genetic disorder resulting in progressive retinal degeneration in humans. In vertebrates, several bodies of evidence have clearly established the role of Rp2 protein in cilia genesis and/or function. Unexpectedly, some observations in zebrafish have suggested the oocyte-predominant expression of the rp2 gene, a typical feature of maternal-effect genes. In the present study, we investigate the maternal inheritance of rp2 gene products in zebrafish eggs in order to address whether rp2 could be a novel maternal-effect gene required for normal development. Although both rp2 mRNA and corresponding protein are expressed during oogenesis, rp2 mRNA is maternally inherited, in contrast to Rp2 protein. A knockdown of the protein transcribed from both rp2 maternal and zygotic mRNA results in delayed epiboly and severe developmental defects, including eye malformations, that were not observed when only the protein from zygotic origin was knocked down. Moreover, the knockdown of maternal and zygotic Rp2 revealed a high incidence of left-right asymmetry establishment defects compared to only zygotic knockdown. Here we show that rp2 is a novel maternal-effect gene exclusively expressed in oocytes within the zebrafish ovary and demonstrate that maternal rp2 mRNA is essential for successful embryonic development and thus contributes to egg developmental competence. Our observations also reveal that Rp2 protein translated from maternal mRNA is important to allow normal heart loop formation, thus providing evidence of a direct maternal contribution to left-right asymmetry establishment.
Resumo:
Fusarium wilt of banana, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. A particularly virulent strain of the pathogen, tropical race 4 (TR4), presents an emerging threat to banana producing regions throughout the world. No commercially acceptable banana cultivar is resistant to TR4 and, as with all strains of the Fusarium wilt pathogen, there is no effective chemical control. Genetic resistance to TR4 has been observed in the diploid wild banana Musa acuminata subsp. malaccensis, which has consequently received attention as a potential source of Fusarium resistance genes. The aim of this research was to determine the pattern of inheritance of the resistance trait by screening plants for resistance to Foc subtropical race 4 (SR4) and TR4. Our results showed that the F1 progeny of self-fertilized malaccensis plants challenged in pot trials against SR4 (VCGs 0120, 0129, 01211) and TR4 (VCG 01213/16) segregated for resistance according to a Mendelian ratio of 3:1 which is consistent with a single dominant gene hypothesis.
Resumo:
No funding agencies or grants indicated in the publication.
Resumo:
Copaifera langsdorffii is a Neotropical tree with wide distribution in the Brazilian Atlantic rain forest and savanna. Although eight microsatellite loci (SSR) were developed in 2000 and have been widely used since then, there is yet no information about their inheritance, linkage and linkage disequilibrium (LD). Through the analysis of 28 open-pollinated (OP) progenies, the SSR loci revealed Mendelian inheritance and independent assortment. Using these progenies, young and adult trees LD was mainly detected in OP progenies. Our results show clear evidence that the eight SSR loci can be used without restriction in genetic diversity, mating system and parentage analysis.
Resumo:
Understanding the genetic architecture of quantitative traits can greatly assist the design of strategies for their manipulation in plant-breeding programs. For a number of traits, genetic variation can be the result of segregation of a few major genes and many polygenes (minor genes). The joint segregation analysis (JSA) is a maximum-likelihood approach for fitting segregation models through the simultaneous use of phenotypic information from multiple generations. Our objective in this paper was to use computer simulation to quantify the power of the JSA method for testing the mixed-inheritance model for quantitative traits when it was applied to the six basic generations: both parents (P-1 and P-2), F-1, F-2, and both backcross generations (B-1 and B-2) derived from crossing the F-1 to each parent. A total of 1968 genetic model-experiment scenarios were considered in the simulation study to quantify the power of the method. Factors that interacted to influence the power of the JSA method to correctly detect genetic models were: (1) whether there were one or two major genes in combination with polygenes, (2) the heritability of the major genes and polygenes, (3) the level of dispersion of the major genes and polygenes between the two parents, and (4) the number of individuals examined in each generation (population size). The greatest levels of power were observed for the genetic models defined with simple inheritance; e.g., the power was greater than 90% for the one major gene model, regardless of the population size and major-gene heritability. Lower levels of power were observed for the genetic models with complex inheritance (major genes and polygenes), low heritability, small population sizes and a large dispersion of favourable genes among the two parents; e.g., the power was less than 5% for the two major-gene model with a heritability value of 0.3 and population sizes of 100 individuals. The JSA methodology was then applied to a previously studied sorghum data-set to investigate the genetic control of the putative drought resistance-trait osmotic adjustment in three crosses. The previous study concluded that there were two major genes segregating for osmotic adjustment in the three crosses. Application of the JSA method resulted in a change in the proposed genetic model. The presence of the two major genes was confirmed with the addition of an unspecified number of polygenes.
Resumo:
Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F-2 Population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F-2 progeny from the two new crosses and two crosses described previously (a total of 212 F-2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4 cM. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Cell Biology
Resumo:
Let V be an infinite-dimensional vector space and for every infinite cardinal n such that n≤dimV, let AE(V,n) denote the semigroup of all linear transformations of V whose defect is less than n. In 2009, Mendes-Gonçalves and Sullivan studied the ideal structure of AE(V,n). Here, we consider a similarly-defined semigroup AE(X,q) of transformations defined on an infinite set X. Quite surprisingly, the results obtained for sets differ substantially from the results obtained in the linear setting.