948 resultados para Information Model
Resumo:
We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
Intuitively, any `bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distri- butions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
Resumo:
For over a decade, IT expenditure in China and Malaysia has shown a significant increase, as organisations in these countries are increasingly dependent on information systems (IS) for achieving strategic advantages and business benefits. However, there have been numerous reports of dissatisfaction with IS, and in some cases the effectiveness of the information systems have yet to be reviewed. Two exploratory case studies reported in this paper are the first phase of an overall research in validating the IS-Impact model introduced by Gable, Sedera and Chan in two countries: China and Malaysia. This validation research aims to produce a standard measuring model across different contexts. The purpose of this paper is to present preliminary findings from two exploratory case studies, attempt to test the feasibility of the research design and to investigate applicability of the IS-Impact model in Chinese and Malaysian organisations. Twenty-nine respondents from a Chinese private company and seventeen respondents from a state government in Malaysia were involved in these studies. Findings indicated that most of existing IS-Impact measures are applicable in the study contexts, however, there are some new measures informed by the respondents. Feedback from the case studies also suggested necessary modifications to the Mandarin instrument.
Resumo:
The ICU is an integral part of any hospital and is under great load from patient arrivals as well as resource limitations. Scheduling of patients in the ICU is complicated by the two general types; elective surgery and emergency arrivals. This complicated situation is handled by creating a tentative initial schedule and then reacting to uncertain arrivals as they occur. For most hospitals there is little or no flexibility in the number of beds that are available for use now or in the future. We propose an integer programming model to handle a parallel machine reacting system for scheduled and unscheduled arrivals.
Resumo:
The study addresses known limitations of what may be the most important dependent variable in Information Systems (IS) research; IS-Success or IS-Impact. The study is expected to force a deeper understanding of the broad notions of IS success and impact. The aims of the research are to: (1) enhance the robustness and minimize limitations of the IS-Impact model, and (2) introduce and operationalise a more rigorously validated IS Impact measurement model to Universities, as a reliable model for evaluating different Administrative Systems. In extending and further generalizing the IS-Impact model, the study will address contemporary validation issues.
Resumo:
The overall research aims to develop a standardised instrument to measure the impacts resulting from contemporary Information Systems (IS). The research adopts the IS-Impact measurement model, introduced by Gable et al, (2008), as its theoretical foundation, and applies the extension strategy described by Berthon et al. (2002); extending both theory and the context, where the new context is the Human Resource (HR) system. The research will be conducted in two phases, the exploratory phase and the specification phase. The purpose of this paper is to present the findings of the exploratory phase. 134 respondents from a major Australian University were involved in this phase. The findings have supported most of the existing IS-Impact model’s credibility. However, some textual data may suggest new measures for the IS-Impact model, while the low response rate or the averting of some may suggest the elimination of some measures from the model.
Resumo:
Established Monte Carlo user codes BEAMnrc and DOSXYZnrc permit the accurate and straightforward simulation of radiotherapy experiments and treatments delivered from multiple beam angles. However, when an electronic portal imaging detector (EPID) is included in these simulations, treatment delivery from non-zero beam angles becomes problematic. This study introduces CTCombine, a purpose-built code for rotating selected CT data volumes, converting CT numbers to mass densities, combining the results with model EPIDs and writing output in a form which can easily be read and used by the dose calculation code DOSXYZnrc. The geometric and dosimetric accuracy of CTCombine’s output has been assessed by simulating simple and complex treatments applied to a rotated planar phantom and a rotated humanoid phantom and comparing the resulting virtual EPID images with the images acquired using experimental measurements and independent simulations of equivalent phantoms. It is expected that CTCombine will be useful for Monte Carlo studies of EPID dosimetry as well as other EPID imaging applications.
Resumo:
The two longitudinal case studies that make up this dissertation sought to explain and predict the relationship between usability and clinician acceptance of a health information system. The overall aim of the research study was to determine what role usability plays in the acceptance or rejection of systems used by clinicians in a healthcare context. The focus was on the end users (the clinicians) rather than the views of the system designers and managers responsible for implementation and the clients of the clinicians. A mixed methods approach was adopted that drew on both qualitative and quantitative research methods. This study followed the implementation of a community health information system from early beginnings to its established practice. Users were drawn from different health service departments with distinctly different organisational cultures and attitudes to information and communication technology used in this context. This study provided evidence that a usability analysis in this context would not necessarily be valid when the users have prior reservations on acceptance. Investigation was made on the initial training and post-implementation support together with a study on the nature of the clinicians to determine factors that may influence their attitude. This research identified that acceptance of a system is not necessarily a measure of its quality, capability and usability, is influenced by the user’s attitude which is determined by outside factors, and the nature and quality of training. The need to recognise the limitations of the current methodologies for analysing usability and acceptance was explored to lay the foundations for further research.
Resumo:
Organizations invest heavily in Customer Relationship Management (CRM) and Supply Chain Management (SCM) systems, and their related infrastructure, presumably expecting positive benefits to the organization. Assessing the benefits of such applications is an important aspect of managing such systems. Considering the salient differences between CRM and SCM applications with other intra-organizational applications, existing Information Systems benefits measurement models and frameworks are ill-suited to gauge benefits of inter-organizational systems. This paper reports the preliminary findings of a measurement model developed to assess benefits of CRM and SCM applications. The preliminary model, which reflects the characteristics of the Analytic Theory, is derived using a review of 55 academic studies and 44 papers from the practice. Six hundred and six identified benefits were then synthesized in to 74 non-overlapping benefits, arranged under six dimensions.
Resumo:
The Thai written language is one of the languages that does not have word boundaries. In order to discover the meaning of the document, all texts must be separated into syllables, words, sentences, and paragraphs. This paper develops a novel method to segment the Thai text by combining a non-dictionary based technique with a dictionary-based technique. This method first applies the Thai language grammar rules to the text for identifying syllables. The hidden Markov model is then used for merging possible syllables into words. The identified words are verified with a lexical dictionary and a decision tree is employed to discover the words unidentified by the lexical dictionary. Documents used in the litigation process of Thai court proceedings have been used in experiments. The results which are segmented words, obtained by the proposed method outperform the results obtained by other existing methods.
Resumo:
The book within which this chapter appears is published as a research reference book (not a coursework textbook) on Management Information Systems (MIS) for seniors or graduate students in Chinese universities. It is hoped that this chapter, along with the others, will be helpful to MIS scholars and PhD/Masters research students in China who seek understanding of several central Information Systems (IS) research topics and related issues. The subject of this chapter - ‘Evaluating Information Systems’ - is broad, and cannot be addressed in its entirety in any depth within a single book chapter. The chapter proceeds from the truism that organizations have limited resources and those resources need to be invested in a way that provides greatest benefit to the organization. IT expenditure represents a substantial portion of any organization’s investment budget and IT related innovations have broad organizational impacts. Evaluation of the impact of this major investment is essential to justify this expenditure both pre- and post-investment. Evaluation is also important to prioritize possible improvements. The chapter (and most of the literature reviewed herein) admittedly assumes a blackbox view of IS/IT1, emphasizing measures of its consequences (e.g. for organizational performance or the economy) or perceptions of its quality from a user perspective. This reflects the MIS emphasis – a ‘management’ emphasis rather than a software engineering emphasis2, where a software engineering emphasis might be on the technical characteristics and technical performance. Though a black-box approach limits diagnostic specificity of findings from a technical perspective, it offers many benefits. In addition to superior management information, these benefits may include economy of measurement and comparability of findings (e.g. see Part 4 on Benchmarking IS). The chapter does not purport to be a comprehensive treatment of the relevant literature. It does, however, reflect many of the more influential works, and a representative range of important writings in the area. The author has been somewhat opportunistic in Part 2, employing a single journal – The Journal of Strategic Information Systems – to derive a classification of literature in the broader domain. Nonetheless, the arguments for this approach are believed to be sound, and the value from this exercise real. The chapter drills down from the general to the specific. It commences with a highlevel overview of the general topic area. This is achieved in 2 parts: - Part 1 addressing existing research in the more comprehensive IS research outlets (e.g. MISQ, JAIS, ISR, JMIS, ICIS), and Part 2 addressing existing research in a key specialist outlet (i.e. Journal of Strategic Information Systems). Subsequently, in Part 3, the chapter narrows to focus on the sub-topic ‘Information Systems Success Measurement’; then drilling deeper to become even more focused in Part 4 on ‘Benchmarking Information Systems’. In other words, the chapter drills down from Parts 1&2 Value of IS, to Part 3 Measuring Information Systems Success, to Part 4 Benchmarking IS. While the commencing Parts (1&2) are by definition broadly relevant to the chapter topic, the subsequent, more focused Parts (3 and 4) admittedly reflect the author’s more specific interests. Thus, the three chapter foci – value of IS, measuring IS success, and benchmarking IS - are not mutually exclusive, but, rather, each subsequent focus is in most respects a sub-set of the former. Parts 1&2, ‘the Value of IS’, take a broad view, with much emphasis on ‘the business Value of IS’, or the relationship between information technology and organizational performance. Part 3, ‘Information System Success Measurement’, focuses more specifically on measures and constructs employed in empirical research into the drivers of IS success (ISS). (DeLone and McLean 1992) inventoried and rationalized disparate prior measures of ISS into 6 constructs – System Quality, Information Quality, Individual Impact, Organizational Impact, Satisfaction and Use (later suggesting a 7th construct – Service Quality (DeLone and McLean 2003)). These 6 constructs have been used extensively, individually or in some combination, as the dependent variable in research seeking to better understand the important antecedents or drivers of IS Success. Part 3 reviews this body of work. Part 4, ‘Benchmarking Information Systems’, drills deeper again, focusing more specifically on a measure of the IS that can be used as a ‘benchmark’3. This section consolidates and extends the work of the author and his colleagues4 to derive a robust, validated IS-Impact measurement model for benchmarking contemporary Information Systems (IS). Though IS-Impact, like ISS, has potential value in empirical, causal research, its design and validation has emphasized its role and value as a comparator; a measure that is simple, robust and generalizable and which yields results that are as far as possible comparable across time, across stakeholders, and across differing systems and systems contexts.
Resumo:
Over the last decade, the rapid growth and adoption of the World Wide Web has further exacerbated user needs for e±cient mechanisms for information and knowledge location, selection, and retrieval. How to gather useful and meaningful information from the Web becomes challenging to users. The capture of user information needs is key to delivering users' desired information, and user pro¯les can help to capture information needs. However, e®ectively acquiring user pro¯les is di±cult. It is argued that if user background knowledge can be speci¯ed by ontolo- gies, more accurate user pro¯les can be acquired and thus information needs can be captured e®ectively. Web users implicitly possess concept models that are obtained from their experience and education, and use the concept models in information gathering. Prior to this work, much research has attempted to use ontologies to specify user background knowledge and user concept models. However, these works have a drawback in that they cannot move beyond the subsumption of super - and sub-class structure to emphasising the speci¯c se- mantic relations in a single computational model. This has also been a challenge for years in the knowledge engineering community. Thus, using ontologies to represent user concept models and to acquire user pro¯les remains an unsolved problem in personalised Web information gathering and knowledge engineering. In this thesis, an ontology learning and mining model is proposed to acquire user pro¯les for personalised Web information gathering. The proposed compu- tational model emphasises the speci¯c is-a and part-of semantic relations in one computational model. The world knowledge and users' Local Instance Reposito- ries are used to attempt to discover and specify user background knowledge. From a world knowledge base, personalised ontologies are constructed by adopting au- tomatic or semi-automatic techniques to extract user interest concepts, focusing on user information needs. A multidimensional ontology mining method, Speci- ¯city and Exhaustivity, is also introduced in this thesis for analysing the user background knowledge discovered and speci¯ed in user personalised ontologies. The ontology learning and mining model is evaluated by comparing with human- based and state-of-the-art computational models in experiments, using a large, standard data set. The experimental results are promising for evaluation. The proposed ontology learning and mining model in this thesis helps to develop a better understanding of user pro¯le acquisition, thus providing better design of personalised Web information gathering systems. The contributions are increasingly signi¯cant, given both the rapid explosion of Web information in recent years and today's accessibility to the Internet and the full text world.
Resumo:
The increasing diversity of the Internet has created a vast number of multilingual resources on the Web. A huge number of these documents are written in various languages other than English. Consequently, the demand for searching in non-English languages is growing exponentially. It is desirable that a search engine can search for information over collections of documents in other languages. This research investigates the techniques for developing high-quality Chinese information retrieval systems. A distinctive feature of Chinese text is that a Chinese document is a sequence of Chinese characters with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose two approaches to deal with the problems. In the first approach, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach. In the second approach, we propose a novel query expansion method which applies text mining techniques in order to find the most relevant words to extend the query. Unlike most existing query expansion methods, which generally select the highly frequent indexing terms from the retrieved documents to expand the query. In our approach, we utilize text mining techniques to find patterns from the retrieved documents that highly correlate with the query term and then use the relevant words in the patterns to expand the original query. This research project develops and implements a Chinese information retrieval system for evaluating the proposed approaches. There are two stages in the experiments. The first stage is to investigate if high accuracy segmentation can make an improvement to Chinese information retrieval. In the second stage, a text mining based query expansion approach is implemented and a further experiment has been done to compare its performance with the standard Rocchio approach with the proposed text mining based query expansion method. The NTCIR5 Chinese collections are used in the experiments. The experiment results show that by incorporating the text mining based query expansion with the hybrid model, significant improvement has been achieved in both precision and recall assessments.