833 resultados para Inbred SHR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The spontaneously hypertensive rat (SHR) is frequently used as model of cardiovascular disease, with considerable disparity in reported parameters of hypertrophy. The aim of this study was to assess the temporal changes occurring during the development and progression of cardiomyocyte hypertrophy in SHR, subsequent to pressure overload, compared to changes associated with normal aging using the normotensive Wistar–Kyoto (WKY) rat. Methods Ventricular cardiomyocytes were isolated from rats at 8, 12, 16, 20 and 24 weeks, and parameters of hypertrophy (cell dimensions, protein mass, de novo protein synthesis, and gene expression) and function (contraction and hypertrophic responsiveness in vitro) were assessed. Results Hypertension was evident at =7 weeks in SHRs. Heart:body mass ratio, cardiomyocyte protein mass and width were elevated (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To determine the effects of age and dual endothelin (ET)A/ETB receptor antagonism (bosentan) on aortic matrix metalloproteinase (MMP) abundance and tissue inhibitor of metalloproteinase (TIMP) expression in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). METHODS: Male SHR and control WKY rats were randomly assigned to receive placebo or bosentan (100 mg/kg per day) for 3 months. Animals were killed under terminal anaesthesia at either 20 weeks (adult) or 17-20 months (senescent). Aortic gelatinase activity was determined by zymography, whereas MT-1 MMP and TIMP-1 expression were assessed by immunoblotting. RESULTS: In WKY rats, aortic MMP-2 but not proMMP-2 activity was 3.6-fold higher (P <0.02) in the senescent compared with the adult group. TIMP-1 (twofold) and MT-1 MMP (3.8-fold) expression increased (P <0.05) with age in the WKY groups. Short-term hypertension (adult SHR versus adult WKY) increased MMP-2 to 74.7 +/- 14.1 from 18.9 +/- 3.5 arbitrary units (AU) (P = 0.0012), but did not alter proMMP-2 activity. This increased further on progression to chronic hypertension (117.4 +/- 12.2 versus 74.7 +/- 14.1 AU; P <0.02). Bosentan decreased MMP-2 (78.9 +/- 3.8 versus 117.4 +/- 12.2 AU; P = 0.014) and proMMP-2 activity (P <0.006) in the senescent SHR group. CONCLUSION: Ageing and the development/progression of hypertension are associated with increased MMP-2 activity in the aorta, which is consistent with ongoing remodelling of the vasculature. However, the underlying mechanisms regulating MMP-2 abundance in ageing and hypertension appear to be divergent, as MT-1 MMP expression is differentially altered. Dual ETA/ETB receptor antagonism did not alter the age-dependent increase in aortic MMP activity in normotensive rats. However, bosentan decreased pro and active MMP-2 activity in senescent SHR rats, indicating that ET modulates late events in vascular remodelling in hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The V617F mutation, which causes the substitution of phenylalanine for valine at position 617 of the Janus kinase (JAK) 2 gene (JAK2), is often present in patients with polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis. However, the molecular basis of these myeloproliferative disorders in patients without the V617F mutation is unclear. Methods We searched for new mutations in members of the JAK and signal transducer and activator of transcription (STAT) gene families in patients with V617F-negative polycythemia vera or idiopathic erythrocytosis. The mutations were characterized biochemically and in a murine model of bone marrow transplantation. Results We identified four somatic gain-of-function mutations affecting JAK2 exon 12 in 10 V617F-negative patients. Those with a JAK2 exon 12 mutation presented with an isolated erythrocytosis and distinctive bone marrow morphology, and several also had reduced serum erythropoietin levels. Erythroid colonies could be grown from their blood samples in the absence of exogenous erythropoietin. All such erythroid colonies were heterozygous for the mutation, whereas colonies homozygous for the mutation occur in most patients with V617F-positive polycythemia vera. BaF3 cells expressing the murine erythropoietin receptor and also carrying exon 12 mutations could proliferate without added interleukin-3. They also exhibited increased phosphorylation of JAK2 and extracellular regulated kinase 1 and 2, as compared with cells transduced by wild-type JAK2 or V617F JAK2. Three of the exon 12 mutations included a substitution of leucine for lysine at position 539 of JAK2. This mutation resulted in a myeloproliferative phenotype, including erythrocytosis, in a murine model of retroviral bone marrow transplantation. Conclusions JAK2 exon 12 mutations define a distinctive myeloproliferative syndrome that affects patients who currently receive a diagnosis of polycythemia vera or idiopathic erythrocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suppression of angiogenesis during diabetes is a recognized phenomenon but is less appreciated within the context of diabetic retinopathy. The current study has investigated regulation of retinal angiogenesis by diabetic serum and determined if advanced glycation end products (AGEs) could modulate this response, possibly via AGE-receptor interactions. A novel in vitro model of retinal angiogenesis was developed and the ability of diabetic sera to regulate this process was quantified. AGE-modified serum albumin was prepared according to a range of protocols, and these were also analyzed along with neutralization of the AGE receptors galectin-3 and RAGE. Retinal ischemia and neovascularization were also studied in a murine model of oxygen-induced proliferative retinopathy (OIR) in wild-type and galectin-3 knockout mice (gal3(-/-)) after perfusion of preformed AGEs. Serum from nondiabetic patients showed significantly more angiogenic potential than diabetic serum (P <0.0001) and within the diabetic group, poor glycemic control resulted in more AGEs but less angiogenic potential than tight control (P <0.01). AGE-modified albumin caused a dose-dependent inhibition of angiogenesis (P <0.001), and AGE receptor neutralization significantly reversed the AGE-mediated suppression of angiogenesis (P <0.01). AGE-treated wild-type mice showed a significant increase in inner retinal ischemia and a reduction in neovascularization compared with non-AGE controls (P <0.001). However, ablation of galectin-3 abolished the AGE-mediated increase in retinal ischemia and restored the neovascular response to that seen in controls. The data suggest a significant suppression of angiogenesis by the retinal microvasculature during diabetes and implicate AGEs and AGE-receptor interactions in its causation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Intermedin (IMD), a novel cardiac peptide related to adrenomedullin (AM), protects against myocardial ischemia-reperfusion injury and attenuates ventricular remodelling. IMD’s actions are mediated by a calcitonin receptor-like receptor in association with receptor activity modifying proteins (RAMPs 1-3). Aim/method: using the spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) rat at 20 weeks of age, to examine (i) the presence of myocardial oxidative stress and concentric hypertrophy; (ii) expression of IMD, AM and receptor components. Results: In left and right ventricular cardiomyocytes from SHR vs. WKY cell width (26% left, 15% right) and mRNA expression of hypertrophic markers ANP (2.7 fold left, 2.7 fold right) and BNP (2.2 fold left, 2.0 fold right) were enhanced. In left ventricular cardiomyocytes only (i) oxidative stress was indicated by increased membrane protein carbonyl content (71%) and augmented production of O2- anion (64%); (ii) IMD (6.8 fold), RAMP1 (2.5 fold) and RAMP3 (2.0 fold) mRNA was increased while AM and RAMP2 mRNA was not altered; (iii) abundance of RAMP1 (by 48%), RAMP2 (by 41%) and RAMP3 (by 90%) monomers in cell membranes was decreased. Conclusion: robust augmentation of IMD expression in hypertrophied left ventricular cardiomyocytes indicates a prominent role for this counter-regulatory peptide in the adaptation of the SHR myocardium to the stresses imposed by chronic hypertension. The local concentration and action of IMD may be further enhanced by down-regulation of NEP within the left ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Animal models are important for pre-clinical assessment of novel therapies in metastatic bladder cancer. The F344/AY-27 model involves orthotopic colonisation with AY-27 tumour cells which are syngeneic to F344 rats. One disadvantage of the model is the unknown status of colonisation between instillation and sacrifice. Non-invasive optical imaging using red fluorescence reporters could potentially detect tumours in situ and would also reduce the number of animals required for each experiment.

MATERIALS AND METHODS: AY-27 cells were stably transfected with either pDsRed2-N1 or pcDNA3.1tdTomato. The intensity and stability of fluorescence in the resultant AY-27/DsRed2-N1 and AY-27/tdTomato stable cell lines were compared using Xenogen IVIS®200 and Olympus IX51 systems.

RESULTS: AY-27/tdTomato fluorescence intensity was 60-fold brighter than AY-27/DsRed2-N1 and was sustained in AY-27/tdTomato cells following freezing and six subsequent sub-cultures. After sub-cutaneous injection, fluorescence intensity from AY-27/tdTomato cells was threefold stronger than that detected from AY-27/DsRed2-N1 cells. IVIS®200 detected fluorescence from AY-27/tdTomato and AY-27/DsRed2-N1 cells colonising resected and exteriorised bladders, respectively. However, the deep-seated position of the bladder precluded in vivo imaging. Characteristics of AY-27/tdTomato cells in vitro and in tumours colonising F344 rats resembled those of parental AY-27 cells. Tumour transformation was observed in the bladders colonised with AY-27/DsRed2-N1 cells.

CONCLUSIONS: In vivo whole-body imaging of internal red fluorescent animal tumours should use pcDNA3.1tdTomato rather than pDsRed2-N1. Optical imaging of deep-seated organs in larger animals remains a challenge which may require proteins with brighter red or far-red fluorescence and/or alternative approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of recent studies have indicated that bone marrow cells can differentiate into various cells of ectodermal, mesodermal, and endodermal origins when transplanted into the body. However, the problems associated with those experiments such as the long latent period, rareness of the event, and difficulty in controlling the processes have hampered detailed mechanistic studies. In the present study, we examined the potency of mouse bone marrow cells to differentiate into cells comprising skin tissues using a skin reconstitution assay. Bone marrow cells from adult green fluorescent protein (GFP)-transgenic mice were transplanted in a mixture of embryonic mouse skin cells (17.5 days post-coitus) onto skin defects made on the backs of nude mice. Within 3 weeks, fully differentiated skin with hair was reconstituted. GFP-positive cells were found in the epidermis, hair follicles, sebaceous glands, and dermis. The localization and morphology of the cells, results of immunohistochemistry, and results of specific staining confirmed that the bone marrow cells had differentiated into epidermal keratinocytes, sebaceous gland cells, follicular epithelial cells, dendritic cells, and endothelial cells under the present conditions. These results indicate that this system is suitable for molecular and cellular mechanistic studies on differentiation of stem cells to various epidermal and dermal cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.