906 resultados para In Situ Hybridization, Fluorescence
Resumo:
Astyanax scabripinnis possesses a widespread polymorphism for metacentric B chromosomes as large as the largest chromosome pair in the A complement. on the basis of C-banding pattern, it was hypothesized that these B chromosomes are isochromosomes that have arisen by means of centromere misdivision and chromatid nondisjunction. In the present paper we test this hypothesis by analysing (i) the localization of a repetitive DNA sequence on both B chromosome arms, and (ii) synaptonemal complex formation, in order to test the functional homology of both arms. Genomic DNA digested with KpnI and analysed by gel electrophoresis showed fragments in a ladder-like pattern typical of tandemly repetitive DNA. These fragments were cloned and their tandem organization in the genome was confirmed. A 51-bp long consensus sequence, which was AT-rich (59%) and contained a variable region and two imperfect reverse sequences, was obtained. Fluorescence in situ hybridization (FISH) localized this repetitive DNA into noncentromeric constitutive heterochromatin which encompasses the terminal region of some acrocentric chromosomes, the NOR region, and interstitial polymorphic heterochromatin in chromosome 24. Most remarkably, tandem repeats were almost symmetrically placed in the two arms of the B chromosome, with the exception of two additional small clusters proximally located on the slightly longer arm. Synaptonemal complex (SC) analysis showed 26 completely paired SCs in males with 1B. The ring configuration of the B univalent persisting until metaphase I suggests that the two arms formed chiasmata. All these data provided strong support for the hypothesis that the B chromosome is an isochromosome.
Resumo:
Purpose: Genetic biomarkers of head and neck tumors could be useful for distinguishing among patients with similar clinical and histopathologic characteristics but having differential probabilities of survival. The purpose of this study was to investigate chromosomal alterations in head and neck carcinomas and to correlate the results with clinical and epidentiologic variables.Experimental Design: Cytogenetic analysis of short-term cultures from 64 primary untreated head and neck squamous cell carcinomas was used to determine the overall pattern of chromosome aberrations. A representative subset of tumors was analyzed in detail by spectral karyotyping and/or confirmatory fluorescence in situ hybridization analysis.Results: Recurrent losses of chromosomes Y (26 cases) and 19 (14 cases), and gains of chromosomes 22 (23 cases), 8 and 20 (11 cases each) were observed. The most frequent structural aberration was del(22)(q13.1) followed by rearrangements involving 6q and 12p. The presence of specific cytogenetic aberrations was found to correlate significantly with an unfavorable outcome. There was a significant association between survival and gains in chromosomes 10 (P = 0.008) and 20 (P = 0.002) and losses of chromosomes 15 (P = 0.005) and 22 (P = 0.021). Univariate analysis indicated that acquisition of monosomy 17 was a significant (P = 0.0012) factor for patients with a previous family history of cancer.Conclusions: the significant associations found in this study emphasize that alterations of distinct regions of the genome may be genetic biomarkers for a poor prognosis. Losses of chromosomes 17 and 22 can be associated with a family history of cancer.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gains or amplifications involving chromosome arm 8q are one of the most recurrent chromosomal alterations in head and neck tumors. To characterize previously reported gains, we performed fluorescence in situ hybridization (FISH) using the sequences BAC RP1179E1 and 8-centromere PMJ 128 as probes. Gains and/or amplifications were detected in all 19 cases evaluated by FISH. The FISH analysis, but not G-banding, revealed homogeneously staining region in three cases. We conclude that gains of one or more genes on chromosome arm 8q may be important for the early stages of head and neck carcinomas. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A 13-year old girl was diagnosed as having a bone hemangioendothelioma. Cytogenetic studies identified the presence of a small supernumerary marker chromosome in this patient. Classical cytogenetic methods using G-, C-, Ag-NOR-banding were supplemented by spectral karyotyping (SKY) and fluorescence in situ hybridization to reveal a karyotype 47,XX,+mar.ish der(22)(D22S543+) karyotype in cells derived from the tumor and lymphocytes. These findings suggest that the supernumerary marker chromosome originated from the proximal centromeric region of chromosome 22, and that trisomy of the region 22q11: was not associated with adverse phenotypic effects, but that the presence of trisomy 22q11 may be related to the development of this tumor. (C) Elsevier B.V., 1999. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structure of the heterochromatic bands in mitotic chromosomes of the important tropical aquaculture species of tilapia, Oreochromis niloticus, was investigated by the combination of the C-banding technique, chromosomal digestion with two restriction endonucleases and fluorescence in situ hybridization (FISH) of two satellite DNAs (SATA and SATB). The tilapia chromosomes presented heterochromatic bands in the centromeres and in the short arms of almost all chromosomes that were differentially digested by the restriction endonucleases HaeIII and EcoRI. FISH of SATA showed that the satellite sequence is distributed in the centromeric region of all chromosomes of tilapia. FISH also revealed an intense hybridization signal for SATB in only one chromosome pair, but less intense signals were also present in several other pairs. The digestion of tilapia chromosomes by HaeIII and EcoRI was positively correlated with the position of SATA and SATB in chromosomes as revealed by FISH. The results obtained may be useful in future molecular and genetic studies of tilapias.
Resumo:
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish. Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were deter-mined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence in situ hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively, An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA. The presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements. Copyright (C) 2002 S. Karger AG, Basel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)