902 resultados para Imagens geográficas
Resumo:
Visual attention is a very important task in autonomous robotics, but, because of its complexity, the processing time required is significant. We propose an architecture for feature selection using foveated images that is guided by visual attention tasks and that reduces the processing time required to perform these tasks. Our system can be applied in bottom-up or top-down visual attention. The foveated model determines which scales are to be used on the feature extraction algorithm. The system is able to discard features that are not extremely necessary for the tasks, thus, reducing the processing time. If the fovea is correctly placed, then it is possible to reduce the processing time without compromising the quality of the tasks outputs. The distance of the fovea from the object is also analyzed. If the visual system loses the tracking in top-down attention, basic strategies of fovea placement can be applied. Experiments have shown that it is possible to reduce up to 60% the processing time with this approach. To validate the method, we tested it with the feature algorithm known as Speeded Up Robust Features (SURF), one of the most efficient approaches for feature extraction. With the proposed architecture, we can accomplish real time requirements of robotics vision, mainly to be applied in autonomous robotics
Resumo:
abstract
Resumo:
ln this work the implementation of the SOM (Self Organizing Maps) algorithm or Kohonen neural network is presented in the form of hierarchical structures, applied to the compression of images. The main objective of this approach is to develop an Hierarchical SOM algorithm with static structure and another one with dynamic structure to generate codebooks (books of codes) in the process of the image Vector Quantization (VQ), reducing the time of processing and obtaining a good rate of compression of images with a minimum degradation of the quality in relation to the original image. Both self-organizing neural networks developed here, were denominated HSOM, for static case, and DHSOM, for the dynamic case. ln the first form, the hierarchical structure is previously defined and in the later this structure grows in an automatic way in agreement with heuristic rules that explore the data of the training group without use of external parameters. For the network, the heuristic mIes determine the dynamics of growth, the pruning of ramifications criteria, the flexibility and the size of children maps. The LBO (Linde-Buzo-Oray) algorithm or K-means, one ofthe more used algorithms to develop codebook for Vector Quantization, was used together with the algorithm of Kohonen in its basic form, that is, not hierarchical, as a reference to compare the performance of the algorithms here proposed. A performance analysis between the two hierarchical structures is also accomplished in this work. The efficiency of the proposed processing is verified by the reduction in the complexity computational compared to the traditional algorithms, as well as, through the quantitative analysis of the images reconstructed in function of the parameters: (PSNR) peak signal-to-noise ratio and (MSE) medium squared error
Resumo:
We propose a multi-resolution, coarse-to-fine approach for stereo matching, where the first matching happens at a different depth for each pixel. The proposed technique has the potential of attenuating several problems faced by the constant depth algorithm, making it possible to reduce the number of errors or the number of comparations needed to get equivalent results. Several experiments were performed to demonstrate the method efficiency, including comparison with the traditional plain correlation technique, where the multi-resolution matching with variable depth, proposed here, generated better results with a smaller processing time
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
Este trabalho teve o objetivo de avaliar a evolução do uso da terra no município de Botucatu - SP, no período de três anos, considerando-se seis tipos de cobertura vegetal (cana-de-açúcar, reflorestamento, floresta nativa, pastagem, cítrus e outros), tendo como base as imagens de satélite Landsat 5, bandas 3; 4 e 5, órbita 220, ponto 76, quadrante A, passagem de 8 de junho de 1999. O Sistema de Informações Geográficas - IDRISI for Windows 3.2, foi utilizado para as análises. Os resultados mostraram que esse programa foi eficiente para auxiliar na identificação e mapeamento das áreas com uso da terra, facilitando o processamento dos dados. As imagens de satélite TM/LANDSAT 5 forneceram um excelente banco de dados para a classificação supervisionada. O município não vem sendo preservado ambientalmente, pois apresenta-se coberto com menos de 20% de florestas nativas, mínimo exigido por lei. As áreas de pastagem, principal componente da paisagem do município, confirmam a vocação da região para a pecuária.
Resumo:
This study aims to seek a more viable alternative for the calculation of differences in images of stereo vision, using a factor that reduces heel the amount of points that are considered on the captured image, and a network neural-based radial basis functions to interpolate the results. The objective to be achieved is to produce an approximate picture of disparities using algorithms with low computational cost, unlike the classical algorithms
Resumo:
In this work, we propose a Geographical Information System that can be used as a tool for the treatment and study of problems related with environmental and city management issues. It is based on the Scalable Vector Graphics (SVG) standard for Web development of graphics. The project uses the concept of remate and real-time mar creation by database access through instructions executed by browsers on the Internet. As a way of proving the system effectiveness, we present two study cases;.the first on a region named Maracajaú Coral Reefs, located in Rio Grande do Norte coast, and the second in the Switzerland Northeast in which we intended to promote the substitution of MapServer by the system proposed here. We also show some results that demonstrate the larger geographical data capability achieved by the use of the standardized codes and open source tools, such as Extensible Markup Language (XML), Document Object Model (DOM), script languages ECMAScript/ JavaScript, Hypertext Preprocessor (PHP) and PostgreSQL and its extension, PostGIS
Resumo:
This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots
Resumo:
O presente trabalho teve como objetivo identificar e quantificar o uso da terra em dez microbacias ocorrentes na bacia do Rio Capivara, município de Botucatu - SP, a partir da estruturação de um banco de dados utilizando o Sistema de Informações Geográficas (SIG) - IDRISI. Os resultados mostram que as classes de uso da terra, uso agrícola e pastagem, foram as mais significativas, pois ocuparam mais da metade da área das microbacias. O alto índice de uso da terra por pastagens, capoeiras, reflorestamento e matas reflete a predominância de solos arenosos com baixa fertilidade. As imagens obtidas do satélite LANDSAT 5 permitiram o mapeamento do uso da terra de maneira rápida, além de fornecer um excelente banco de dados para futuro planejamento e gerenciamento das atividades agropecuárias regionais. O SIG-IDRISI permitiu identificar, por meio de seus diferentes módulos para georreferenciamento, classificação digital e modelo matemático, as classes de uso da terra com rapidez.
Resumo:
Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required
Sistema inteligente para detecção de manchas de óleo na superfície marinha através de imagens de SAR
Resumo:
Oil spill on the sea, accidental or not, generates enormous negative consequences for the affected area. The damages are ambient and economic, mainly with the proximity of these spots of preservation areas and/or coastal zones. The development of automatic techniques for identification of oil spots on the sea surface, captured through Radar images, assist in a complete monitoring of the oceans and seas. However spots of different origins can be visualized in this type of imaging, which is a very difficult task. The system proposed in this work, based on techniques of digital image processing and artificial neural network, has the objective to identify the analyzed spot and to discern between oil and other generating phenomena of spot. Tests in functional blocks that compose the proposed system allow the implementation of different algorithms, as well as its detailed and prompt analysis. The algorithms of digital image processing (speckle filtering and gradient), as well as classifier algorithms (Multilayer Perceptron, Radial Basis Function, Support Vector Machine and Committe Machine) are presented and commented.The final performance of the system, with different kind of classifiers, is presented by ROC curve. The true positive rates are considered agreed with the literature about oil slick detection through SAR images presents
Resumo:
There has been an increasing tendency on the use of selective image compression, since several applications make use of digital images and the loss of information in certain regions is not allowed in some cases. However, there are applications in which these images are captured and stored automatically making it impossible to the user to select the regions of interest to be compressed in a lossless manner. A possible solution for this matter would be the automatic selection of these regions, a very difficult problem to solve in general cases. Nevertheless, it is possible to use intelligent techniques to detect these regions in specific cases. This work proposes a selective color image compression method in which regions of interest, previously chosen, are compressed in a lossless manner. This method uses the wavelet transform to decorrelate the pixels of the image, competitive neural network to make a vectorial quantization, mathematical morphology, and Huffman adaptive coding. There are two options for automatic detection in addition to the manual one: a method of texture segmentation, in which the highest frequency texture is selected to be the region of interest, and a new face detection method where the region of the face will be lossless compressed. The results show that both can be successfully used with the compression method, giving the map of the region of interest as an input
Resumo:
Este trabalho teve por objetivo verificar a viabilidade do uso de digitalizador de imagens manual, acoplado a um microcomputador, para a avaliação do consumo de folhas de soja, por lagartas de 5o instar de Anticarsia gemmatalis Hübner (Lep.: Noctuidae), em comparação com o método de pesagem e do planímetro, baseando-se na eficiência dos métodos e no tempo gasto para a avaliação. Os testes foram realizados utilizando-se folhas de soja `IAC 8' e lagartas criadas em dieta artificial. Foram realizados 2 tipos de teste: 1o) oferecimento de folíolos inteiros de soja às lagartas e, 2o) oferecimento de disco de folhas de área conhecida. No 1o teste comparou-se o método de pesagem com o digitalizador de imagens (scanner); no 2o experimento foram comparados o método do planímetro com o digitalizador de imagens que emprega o programa PCXAREA. Os resultados obtidos demonstraram que não existem diferenças nas medições de folíolos e discos de soja consumidos por A. gemmatalis quando comparados os métodos tradicionais (planímetro e pesagem) e o de digitalização de imagens. A medição com o digitalizador reduziu o tempo de avaliação em 88,5% e 87%, em relação ao planímetro e método de pesagem, respectivamente, sendo plenamente viável a sua utilização.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)