994 resultados para INTEGRABLE FIELD THEORIES
Resumo:
Using a genuinely tridimensional approach to the time-dependent Ginzburg-Landau theory, we have studied the local magnetic field profile of a mesoscopic superconductor in the so-called SQUID geometry, i.e., a square with a hole at the center connected to the outside vacuum through a very thin slit. Our investigation was carried out in both the Meissner and the mixed state. We have also studied the influence of the temperature on the space distribution of the local magnetic field. © 2013 IOP Publishing Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Archival Classification and Knowledge Organization: Theoretical Possibilities for the Archival Field
Resumo:
The main goal of this study is to outline a possible relation between archival classification and knowledge organization theory. In this sense, we seek to contribute to the conceptual classification in Archival Science, since there is a lack of systematization about archival classification; not just classification, but even the study of historical and conceptual aspects of the discipline. In the context of knowledge organization there is a considerable amount of research on how to build classification schemes and indexing systems that can help contribute to and expand archival classification theory. In order to comprehend this vast field of theories and methodologies we construct a parallel comparing the classification concepts in both areas and analyzing these concepts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is shown that the correct mathematical implementation of symmetry in the geometric formulation of classical field theory leads naturally beyond the concept of Lie groups and their actions on manifolds, out into the realm of Lie group bundles and, more generally, of Lie groupoids and their actions on fiber bundles. This applies not only to local symmetries, which lie at the heart of gauge theories, but is already true even for global symmetries when one allows for fields that are sections of bundles with (possibly) non-trivial topology or, even when these are topologically trivial, in the absence of a preferred trivialization. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We construct analytical and numerical vortex solutions for an extended Skyrme-Faddeev model in a (3 + 1) dimensional Minkowski space-time. The extension is obtained by adding to the Lagrangian a quartic term, which is the square of the kinetic term, and a potential which breaks the SO(3) symmetry down to SO(2). The construction makes use of an ansatz, invariant under the joint action of the internal SO(2) and three commuting U(1) subgroups of the Poincare group, and which reduces the equations of motion to an ordinary differential equation for a profile function depending on the distance to the x(3) axis. The vortices have finite energy per unit length, and have waves propagating along them with the speed of light. The analytical vortices are obtained for a special choice of potentials, and the numerical ones are constructed using the successive over relaxation method for more general potentials. The spectrum of solutions is analyzed in detail, especially its dependence upon special combinations of coupling constants.
Resumo:
We study some perturbative and nonperturbative effects in the framework of the Standard Model of particle physics. In particular we consider the time dependence of the Higgs vacuum expectation value given by the dynamics of the StandardModel and study the non-adiabatic production of both bosons and fermions, which is intrinsically non-perturbative. In theHartree approximation, we analyze the general expressions that describe the dissipative dynamics due to the backreaction of the produced particles. Then, we solve numerically some relevant cases for the Standard Model phenomenology in the regime of relatively small oscillations of the Higgs vacuum expectation value (vev). As perturbative effects, we consider the leading logarithmic resummation in small Bjorken x QCD, concentrating ourselves on the Nc dependence of the Green functions associated to reggeized gluons. Here the eigenvalues of the BKP kernel for states of more than three reggeized gluons are unknown in general, contrary to the large Nc limit (planar limit) case where the problem becomes integrable. In this contest we consider a 4-gluon kernel for a finite number of colors and define some simple toy models for the configuration space dynamics, which are directly solvable with group theoretical methods. In particular we study the depencence of the spectrum of thesemodelswith respect to the number of colors andmake comparisons with the planar limit case. In the final part we move on the study of theories beyond the Standard Model, considering models built on AdS5 S5/Γ orbifold compactifications of the type IIB superstring, where Γ is the abelian group Zn. We present an appealing three family N = 0 SUSY model with n = 7 for the order of the orbifolding group. This result in a modified Pati–Salam Model which reduced to the StandardModel after symmetry breaking and has interesting phenomenological consequences for LHC.
Resumo:
The first part of the thesis concerns the study of inflation in the context of a theory of gravity called "Induced Gravity" in which the gravitational coupling varies in time according to the dynamics of the very same scalar field (the "inflaton") driving inflation, while taking on the value measured today since the end of inflation. Through the analytical and numerical analysis of scalar and tensor cosmological perturbations we show that the model leads to consistent predictions for a broad variety of symmetry-breaking inflaton's potentials, once that a dimensionless parameter entering into the action is properly constrained. We also discuss the average expansion of the Universe after inflation (when the inflaton undergoes coherent oscillations about the minimum of its potential) and determine the effective equation of state. Finally, we analyze the resonant and perturbative decay of the inflaton during (p)reheating. The second part is devoted to the study of a proposal for a quantum theory of gravity dubbed "Horava-Lifshitz (HL) Gravity" which relies on power-counting renormalizability while explicitly breaking Lorentz invariance. We test a pair of variants of the theory ("projectable" and "non-projectable") on a cosmological background and with the inclusion of scalar field matter. By inspecting the quadratic action for the linear scalar cosmological perturbations we determine the actual number of propagating degrees of freedom and realize that the theory, being endowed with less symmetries than General Relativity, does admit an extra gravitational degree of freedom which is potentially unstable. More specifically, we conclude that in the case of projectable HL Gravity the extra mode is either a ghost or a tachyon, whereas in the case of non-projectable HL Gravity the extra mode can be made well-behaved for suitable choices of a pair of free dimensionless parameters and, moreover, turns out to decouple from the low-energy Physics.
Resumo:
In this thesis we develop further the functional renormalization group (RG) approach to quantum field theory (QFT) based on the effective average action (EAA) and on the exact flow equation that it satisfies. The EAA is a generalization of the standard effective action that interpolates smoothly between the bare action for krightarrowinfty and the standard effective action rnfor krightarrow0. In this way, the problem of performing the functional integral is converted into the problem of integrating the exact flow of the EAA from the UV to the IR. The EAA formalism deals naturally with several different aspects of a QFT. One aspect is related to the discovery of non-Gaussian fixed points of the RG flow that can be used to construct continuum limits. In particular, the EAA framework is a useful setting to search for Asymptotically Safe theories, i.e. theories valid up to arbitrarily high energies. A second aspect in which the EAA reveals its usefulness are non-perturbative calculations. In fact, the exact flow that it satisfies is a valuable starting point for devising new approximation schemes. In the first part of this thesis we review and extend the formalism, in particular we derive the exact RG flow equation for the EAA and the related hierarchy of coupled flow equations for the proper-vertices. We show how standard perturbation theory emerges as a particular way to iteratively solve the flow equation, if the starting point is the bare action. Next, we explore both technical and conceptual issues by means of three different applications of the formalism, to QED, to general non-linear sigma models (NLsigmaM) and to matter fields on curved spacetimes. In the main part of this thesis we construct the EAA for non-abelian gauge theories and for quantum Einstein gravity (QEG), using the background field method to implement the coarse-graining procedure in a gauge invariant way. We propose a new truncation scheme where the EAA is expanded in powers of the curvature or field strength. Crucial to the practical use of this expansion is the development of new techniques to manage functional traces such as the algorithm proposed in this thesis. This allows to project the flow of all terms in the EAA which are analytic in the fields. As an application we show how the low energy effective action for quantum gravity emerges as the result of integrating the RG flow. In any treatment of theories with local symmetries that introduces a reference scale, the question of preserving gauge invariance along the flow emerges as predominant. In the EAA framework this problem is dealt with the use of the background field formalism. This comes at the cost of enlarging the theory space where the EAA lives to the space of functionals of both fluctuation and background fields. In this thesis, we study how the identities dictated by the symmetries are modified by the introduction of the cutoff and we study so called bimetric truncations of the EAA that contain both fluctuation and background couplings. In particular, we confirm the existence of a non-Gaussian fixed point for QEG, that is at the heart of the Asymptotic Safety scenario in quantum gravity; in the enlarged bimetric theory space where the running of the cosmological constant and of Newton's constant is influenced by fluctuation couplings.
Resumo:
rnThis thesis is on the flavor problem of Randall Sundrum modelsrnand their strongly coupled dual theories. These models are particularly wellrnmotivated extensions of the Standard Model, because they simultaneously address rntherngauge hierarchy problem and the hierarchies in the quarkrnmasses and mixings. In order to put this into context, special attention is given to concepts underlying therntheories which can explain the hierarchy problem and the flavor structure of the Standard Model (SM). ThernAdS/CFTrnduality is introduced and its implications for the Randall Sundrum model withrnfermions in the bulk andrngeneral bulk gauge groups is investigated. It will be shown that the differentrnterms in the general 5D propagator of a bulk gauge field can be related tornthe corresponding diagrams of the strongly coupled dual, which allows for arndeeperrnunderstanding of the origin of flavor changing neutral currents generated by thernexchange of the Kaluza Klein excitations of these bulk fields.rnIn the numerical analysis, different observables which are sensitive torncorrections from therntree-levelrnexchange of these resonances will be presented on the basis of updatedrnexperimental data from the Tevatron and LHC experiments. This includesrnelectroweak precision observables, namely corrections to the S and Trnparameters followed by corrections to the Zbb vertex, flavor changingrnobservables with flavor changes at one vertex, viz. BR (Bd -> mu+mu-) and BR (Bs -> mu+mu-), and two vertices,rn viz. S_psiphi and |eps_K|, as well as bounds from direct detectionrnexperiments. rnThe analysis will show that all of these bounds can be brought in agreement withrna new physics scale Lambda_NP in the TeV range, except for the CPrnviolating quantity |eps_K|, which requires Lambda_NP= Ord(10) TeVrnin the absencernof fine-tuning. The numerous modifications of the Randall Sundrum modelrnin the literature, which try to attenuate this bound are reviewed andrncategorized.rnrnSubsequently, a novel solution to this flavor problem, based on an extendedrncolor gauge group in the bulk and its thorough implementation inrnthe RS model, will be presented, as well as an analysis of the observablesrnmentioned above in the extended model. This solution is especially motivatedrnfromrnthe point of view of the strongly coupled dual theory and the implications forrnstrongly coupled models of new physics, which do not possess a holographic dual,rnare examined.rnFinally, the top quark plays a special role in models with a geometric explanation ofrnflavor hierarchies and the predictions in the Randall-Sundrum model with andrnwithout the proposed extension for the forward-backward asymmetryrnA_FB^trnin top pair production are computed.
Resumo:
We revisit the supermultiplet structure of Noether currents for N=1 supersymmetric gauge theories. Using superfield identities and the field equations we show how to derive a superfield equation for the divergences of the Noether currents in terms of the supercurrent and anomaly superfields containing 16_B+16_F components. We refer to this as the natural supercurrent structure as it is invariant under all local symmetries of the theory. It corresponds to the S-multiplet of Komargodski and Seiberg. We clarify the on/off-shell nature of the currents appearing in this multiplet and we study in detail the effect of specific improvement transformations leading to 1) a Ferrara-Zumino multiplet and to 2) a multiplet containing the new improved energy-momentum tensor of Callan, Coleman and Jackiw. Our methods also apply to supersymmetric gauge theories with a Fayet-Iliopoulos term. We construct the natural supercurrent multiplet for such a theory and show how to improve this to a formally gauge-invariant Ferrara-Zumino multiplet by introducing a non-dynamical chiral superfield S to ensure superfield gauge invariance. Finally we study the coupling of this theory to supergravity and show that S remains non-dynamical if the theory is R-symmetric and that S becomes propagating if the theory is not R-symmetric, leading to non-minimal 16_B+16_F supergravity
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.
Resumo:
This introductory chapter briefly introduces a few milestones in the voluminous previous literature on semantic roles, and charts the territory in which the papers of this volume aim to make a contribution. This territory is characterized by fairly disparate conceptualizations of semantic roles and their status in theories of grammar and the lexicon, as well as by diverse and probably complementary ways of deriving or identifying them based on linguistic data. Particular attention is given to the question of how selected roles appear to relate to each other, and we preliminarily address the issue of how roles, subroles, and role complexes are best thought of in general.
Resumo:
We consider an effective field theory for a gauge singlet Dirac dark matter particle interacting with the standard model fields via effective operators suppressed by the scale Λ≳1 TeV. We perform a systematic analysis of the leading loop contributions to spin-independent Dirac dark matter–nucleon scattering using renormalization group evolution between Λ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity suppressed and spin dependent can actually contribute to spin-independent scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are already significantly stronger than LHC bounds, and will improve in the near future. Interestingly, the loop contribution we find is isospin violating even if the underlying theory is isospin conserving.