266 resultados para IMPLANTABLE CARDIOVERTER-DEFIBRILLATORS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). ^ Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 × 10-8 atm-cc/ sec on a helium leak detector were measured. ^ Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typically, hermetic feedthroughs for implantable devices, such as pacemakers, use a alumina ceramic insulator brazed to a platinum wire pin. This combination of material has a long history in implantable devices and has been approved by the FDA for implantable hermetic feedthroughs. The growing demand for increased input/output (I/O) hermetic feedthroughs for implantable neural stimulator applications could be addressed by developing a new, cofired platinum/alumina multilayer ceramic technology in a configuration that supports 300 plus I/Os, which is not commercially available. Seven platinum powders with different particle sizes were used to develop different conductive cofire inks to control the densification mismatch between platinum and alumina. Firing profile (ramp rate, burn- out and holding times) and firing atmosphere and concentrations (hydrogen (wet/dry), air, neutral, vacuum) were also optimized. Platinum and alumina exhibit the alloy formation reaction in a reduced atmosphere. Formation of any compound can increase the bonding of the metal/ceramic interface, resulting in enhanced hermeticity. The feedthrough fabricated in a reduced atmosphere demonstrated significantly superior performance than that of other atmospheres. A composite structure of tungsten/platinum ratios graded thru the via structure (pure W, 50/50 W/Pt, 80/20 Pt/W and pure Pt) exhibited the best performance in comparison to the performance of other materials used for ink metallization. Studies on the high temperature reaction of platinum and alumina, previously unreported, showed that, at low temperatures in reduced atmosphere, Pt 3Al or Pt8Al21 with a tetragonal structure would be formed. Cubic Pt3Al is formed upon heating the sample to temperatures above 1350 °C. This cubic structure is the equilibrium state of Pt-Al alloy at high temperatures. The alumina dissolves into the platinum ink and is redeposited as a surface coating. This was observed on both cofired samples and pure platinum thin films coated on a 99.6 Wt% alumina and fired at 1550 °C. Different mechanisms are proposed to describe this behavior based on the size of the platinum particle

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In cardiovascular disease the definition and the detection of the ECG parameters related to repolarization dynamics in post MI patients is still a crucial unmet need. In addition, the use of a 3D sensor in the implantable medical devices would be a crucial mean in the assessment or prediction of Heart Failure status, but the inclusion of such feature is limited by hardware and firmware constraints. The aim of this thesis is the definition of a reliable surrogate of the 500 Hz ECG signal to reach the aforementioned objective. To evaluate the worsening of reliability due to sampling frequency reduction on delineation performance, the signals have been consecutively down sampled by a factor 2, 4, 8 thus obtaining the ECG signals sampled at 250, 125 and 62.5 Hz, respectively. The final goal is the feasibility assessment of the detection of the fiducial points in order to translate those parameters into meaningful clinical parameter for Heart Failure prediction, such as T waves intervals heterogeneity and variability of areas under T waves. An experimental setting for data collection on healthy volunteers has been set up at the Bakken Research Center in Maastricht. A 16 – channel ambulatory system, provided by TMSI, has recorded the standard 12 – Leads ECG, two 3D accelerometers and a respiration sensor. The collection platform has been set up by the TMSI property software Polybench, the data analysis of such signals has been performed with Matlab. The main results of this study show that the 125 Hz sampling rate has demonstrated to be a good candidate for a reliable detection of fiducial points. T wave intervals proved to be consistently stable, even at 62.5 Hz. Further studies would be needed to provide a better comparison between sampling at 250 Hz and 125 Hz for areas under the T waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-07

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the challenges to biomedical engineers proposed by researchers in neuroscience is brain machine interaction. The nervous system communicates by interpreting electrochemical signals, and implantable circuits make decisions in order to interact with the biological environment. It is well known that Parkinson’s disease is related to a deficit of dopamine (DA). Different methods has been employed to control dopamine concentration like magnetic or electrical stimulators or drugs. In this work was automatically controlled the neurotransmitter concentration since this is not currently employed. To do that, four systems were designed and developed: deep brain stimulation (DBS), transmagnetic stimulation (TMS), Infusion Pump Control (IPC) for drug delivery, and fast scan cyclic voltammetry (FSCV) (sensing circuits which detect varying concentrations of neurotransmitters like dopamine caused by these stimulations). Some softwares also were developed for data display and analysis in synchronously with current events in the experiments. This allowed the use of infusion pumps and their flexibility is such that DBS or TMS can be used in single mode and other stimulation techniques and combinations like lights, sounds, etc. The developed system allows to control automatically the concentration of DA. The resolution of the system is around 0.4 µmol/L with time correction of concentration adjustable between 1 and 90 seconds. The system allows controlling DA concentrations between 1 and 10 µmol/L, with an error about +/- 0.8 µmol/L. Although designed to control DA concentration, the system can be used to control, the concentration of other substances. It is proposed to continue the closed loop development with FSCV and DBS (or TMS, or infusion) using parkinsonian animals models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hacia fines de la década de 1990 comenzó a utilizarse con éxito la estimulación cardíaca en ambas cámaras ventriculares (resincronización venticular) como terapia en insuficiencia cardíaca refractaria al tratamiento farmacológico convencional en pacientes con complejo QRS ensanchado. Fue hasta el 2005 que el estudio CARE-HF demostró que la resincronización reducía la mortalidad en forma significativa, incluso sin necesidad de acompañarla de un cardiodesfibrilador implantable (DAI o desfibrilador automático implantable). En forma más reciente, a través de los estudios REVERSE, MADIT-CRT y RAFT, se ha comprobado la utilidad de la terapia de resincronización incluso en individuos con insuficiencia cardíaca poco sintomática, es decir en clase funcional I o II, lo cual constituye un cambio cualitativo y cuantitativo en este tratamiento eléctrico para la insuficiencia cardíaca. Al mismo tiempo se han hecho significativos avances en la selección del paciente considerando la enfermedad de base, el patrón de bloqueo en el electrocardiograma, la duración del complejo QRS, y la presencia o no de fibrilación auricular. Como resultado de esto, la terapia de resincronización ha producido mejoría en la calidad de vida, ha demostrado que favorece el fenómeno de remodelado inverso y que también disminuye la mortalidad en individuos en clase funcional I o II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinal Cord Injury (SCI) is a devastating condition for human and animal health. In SCI particularly, neurons, oligodendrocytes precursor cells, and mature oligodendrocytes are highly vulnerable to the toxic microenvironment after the lesion and susceptible to the elevated levels of noxious stimuli. Thus the regenerative response of the organism in case of SCI is significantly reduced, and only little spontaneous amelioration is observed in lesioned patients during the early phases. This work mainly focuses on studying and characterizing the modification induced by the SCI in a preclinical animal model. We investigated the ECM composition in the spinal cord segments surrounding the primary lesion site at a gene expression level. We found Timp1 and CD44 as a crucial hub in the secondary cascade of SCI in both spinal cord segments surrounding the lesion site. Interestingly, a temporal and anatomical difference in gene expression, indicating a complex regulation of ECM genes after SCI that could be used as a tool for regenerative medicine. We also investigated the modification in synaptic plasticity-related gene expression in spinal and supraspinal areas involved in motor control. We confirmed the anatomical and temporal difference in gene expression in spinal cord tissue. This analysis suggests that a molecular mapping of the lesion-induced modification could be a useful tool for regenerative medicine. In the last part, we evaluated the efficacy of an implantable biopolymer loaded with an anti-inflammatory drug and a pro-myelinating agent on the acute phase of SCI in our preclinical model. We found a consistent reduction of the inflammatory state in the spinal lesion site and the cord's surrounding segments. Moreover, we found increased preservation of the spinal cord tissue with a related upregulation of neuronal and oligodendroglial markers after lesion. Our treatment showed effective ameliorating functional outcome and reducing the lesion extension in the chronic phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Power Transfer has become a promising technology to overcome the limits of wired solutions. Within this framework, the objective of this thesis is to study a WPT link at millimeter waves involving a particular type of antenna working in the radiative near-field, known as Bessel Beam (BB) Launcher. This antenna has been chosen for its peculiarity of generating a Bessel Beam which is by nature non-diffractive, showing good focusing and self-healing capabilities. In particular, a Bull-Eye Leaky Wave Antenna is designed and analysed, fed by a loop antenna and resonating at approximately 30 GHz. The structure excites a Hybrid-TE mode showing zeroth-order Bessel function over the z-component of the magnetic field. The same antenna is designed with two different dimensions, showing good wireless power transport properties. The link budgets obtained for different configurations are reported. With the aim of exploiting BB Launchers in wearable applications, a further analysis on the receiving part is conducted. For WPT wearable or implantable devices a reduced dimension of the receiver system must be considered. Therefore, an electrically large loop antenna in planar technology is modified, inserting phase shifters in order to increase the intensity of the magnetic field in its interrogation zone. This is fundamental when a BB Launcher is involved as transmitter. The loop antenna, in reception, shows a further miniaturization level since it is built such that its interrogation zone corresponds to the main beam dimension of transmitting BB Launcher. The link budget is evaluated with the new receiver showing comparable results with respect to previous configurations, showing an efficient WPT link for near-field focusing. Finally, a matching network and a full-wave rectifying circuit are attached to two of the different receiving systems considered. Further analysis will be carried out about the robustness of the square loop over biological tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The field of bioelectronics involves the use of electrodes to exchange electrical signals with biological systems for diagnostic and therapeutic purposes in biomedical devices and healthcare applications. However, the mechanical compatibility of implantable devices with the human body has been a challenge, particularly with long-term implantation into target organs. Current rigid bioelectronics can trigger inflammatory responses and cause unstable device functions due to the mechanical mismatch with the surrounding soft tissue. Recent advances in flexible and stretchable electronics have shown promise in making bioelectronic interfaces more biocompatible. To fully achieve this goal, material science and engineering of soft electronic devices must be combined with quantitative characterization and modeling tools to understand the mechanical issues at the interface between electronic technology and biological tissue. Local mechanical characterization is crucial to understand the activation of failure mechanisms and optimizing the devices. Experimental techniques for testing mechanical properties at the nanoscale are emerging, and the Atomic Force Microscope (AFM) is a good candidate for in situ local mechanical characterization of soft bioelectronic interfaces. In this work, in situ experimental techniques with solely AFM supported by interpretive models for the characterization of planar and three-dimensional devices suitable for in vivo and in vitro biomedical experimentations are reported. The combination of the proposed models and experimental techniques provides access to the local mechanical properties of soft bioelectronic interfaces. The study investigates the nanomechanics of hard thin gold films on soft polymeric substrates (Poly(dimethylsiloxane) PDMS) and 3D inkjet-printed micropillars under different deformation states. The proposed characterization methods provide a rapid and precise determination of mechanical properties, thus giving the possibility to parametrize the microfabrication steps and investigate their impact on the final device.