964 resultados para Hydropower system control
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The number of electronic devices connected to agricultural machinery is increasing to support new agricultural practices tasks related to the Precision Agriculture such as spatial variability mapping and Variable Rate Technology (VRT). The Distributed Control System (DCS) is a suitable solution for decentralization of the data acquisition system and the Controller Area Network (CAN) is the major trend among the embedded communications protocols for agricultural machinery and vehicles. The application of soil correctives is a typical problem in Brazil. The efficiency of this correction process is highly dependent of the inputs way at soil and the occurrence of errors affects directly the agricultural yield. To handle this problem, this paper presents the development of a CAN-based distributed control system for a VRT system of soil corrective in agricultural machinery. The VRT system is composed by a tractor-implement that applies a desired rate of inputs according to the georeferenced prescription map of the farm field to support PA (Precision Agriculture). The performance evaluation of the CAN-based VRT system was done by experimental tests and analyzing the CAN messages transmitted in the operation of the entire system. The results of the control error according to the necessity of agricultural application allow conclude that the developed VRT system is suitable for the agricultural productions reaching an acceptable response time and application error. The CAN-Based DCS solution applied in the VRT system reduced the complexity of the control system, easing the installation and maintenance. The use of VRT system allowed applying only the required inputs, increasing the efficiency operation and minimizing the environmental impact.
Resumo:
The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.
Resumo:
The Ball and Beam system is a common didactical experiment in control laboratories that can be used to illustrate many different closed-loop control techniques. The plant itself is subjected to many nonlinear effects, which the most common comes from the relative motion between the ball and the beam. The modeling process normally uses the lagrangean formulation. However, many other nonlinear effects, such as non-viscous friction, beam flexibility, ball slip, actuator elasticity, collisions at the end of the beam, to name a few, are present. Besides that, the system is naturally unstable. In this work, we analyze a subset of these characteristics, in which the ball rolls with slipping and the friction force between the ball and the beam is non-viscous (Coulomb friction). Also, we consider collisions at the ends of the beam, the actuator consists of a (rubber made) belt attached at the free ends of the beam and connected to a DC motor. The model becomes, with those nonlinearities, a differential inclusion system. The elastic coefficients of the belt are experimentally identified, as well as the collision coefficients. The nonlinear behavior of the system is studied and a control strategy is proposed.
Resumo:
We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.
Resumo:
I guess the impetus for laws in our state, really was the action of the city of Boston in 1963, when the Parks and Recreation Department felt that it was time to do something about massive populations of pigeons on the Boston Commons and in the city. The Parks Department came to our agency to find out what could be done. We immediately found as a result of a reorganization and recodification of the laws some 20 years before, that it was illegal to use or apply poisons for the purpose of killing any birds or mammals in the Commonwealth of Massachusetts. Property owners were given the privilege to destroy animals that were doing damage to their property, but only through mechanical means, certainly not by the use of toxicants. We helped the city of Boston draft a bill in 1963, which allowed our agency, the Division of Fisheries and Game, the agency responsible for all wildlife species in the state, the opportunity to issue certain permits for the use of poison, giving full authority to the director of Fisheries and Game with, of course, approval of my board. This allowed certain discretion on our part.
Resumo:
Background: This pilot study aimed to verify if glycemic control can be achieved in type 2 diabetes patients after acute myocardial infarction (AMI), using insulin glargine (iGlar) associated with regular insulin (iReg), compared with the standard intensive care unit protocol, which uses continuous insulin intravenous delivery followed by NPH insulin and iReg (St. Care). Patients and Methods: Patients (n = 20) within 24 h of AMI were randomized to iGlar or St. Care. Therapy was guided exclusively by capillary blood glucose (CBG), but glucometric parameters were also analyzed by blinded continuous glucose monitoring system (CGMS). Results: Mean glycemia was 141 +/- 39 mg/dL for St. Care and 132 +/- 42 mg/dL for iGlar by CBG or 138 +/- 35 mg/dL for St. Care and 129 +/- 34 mg/dL for iGlar by CGMS. Percentage of time in range (80-180 mg/dL) by CGMS was 73 +/- 18% for iGlar and 77 +/- 11% for St. Care. No severe hypoglycemia (<= 40 mg/dL) was detected by CBG, but CGMS indicated 11 (St. Care) and seven (iGlar) excursions in four subjects from each group, mostly in sulfonylurea users (six of eight patients). Conclusions: This pilot study suggests that equivalent glycemic control without increase in severe hyperglycemia may be achieved using iGlar with background iReg. Data outputs were controlled by both CBG and CGMS measurements in a real-life setting to ensure reliability. Based on CGMS measurements, there were significant numbers of glycemic excursions outside of the target range. However, this was not detected by CBG. In addition, the data indicate that previous use of sulfonylurea may be a potential major risk factor for severe hypoglycemia irrespective of the type of insulin treatment.
Resumo:
The design and implementation of a new control scheme for reactive power compensation, voltage regulation and transient stability enhancement for wind turbines equipped with fixed-speed induction generators (IGs) in large interconnected power systems is presented in this study. The low-voltage-ride-through (LVRT) capability is provided by extending the range of the operation of the controlled system to include typical post-fault conditions. A systematic procedure is proposed to design decentralised multi-variable controllers for large interconnected power systems using the linear quadratic (LQ) output-feedback control design method and the controller design procedure is formulated as an optimisation problem involving rank-constrained linear matrix inequality (LMI). In this study, it is shown that a static synchronous compensator (STATCOM) with energy storage system (ESS), controlled via robust control technique, is an effective device for improving the LVRT capability of fixed-speed wind turbines.
Resumo:
Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We aimed to evaluate the influence of different types of wheelchair seats on paraplegic individuals' postural control using a maximum anterior reaching test. Balance evaluations during 50, 75, and 90% of each individual's maximum reach in the forward direction using two different cushions on seat (one foam and one gel) and a no-cushion condition were carried out on 11 individuals with a spinal cord injury (SCI) and six individuals without SCI. Trunk anterior displacement and the time spent to perform the test were assessed. No differences were found for the three types of seats in terms of trunk anterior displacement and the time spent to perform the test when intragroup comparisons were made in both groups (P > 0.05). The intergroup comparison showed that body displacement was less prominent and the time spent to perform the test was more prolonged for individuals with SCI (P < 0.05), which suggests a postural control deficit. The seat type did not affect the ability of the postural control system to maintain balance during the forward-reaching task.
Resumo:
This paper presents the new active absorption wave basin, named Hydrodynamic Calibrator (HC), constructed at the University of São Paulo (USP), in the Laboratory facilities of the Numerical Offshore Tank (TPN). The square (14 m 14 m) tank is able to generate and absorb waves from 0.5 Hz to 2.0 Hz, by means of 148 active hinged flap wave makers. An independent mechanical system drives each flap by means of a 1HP servo-motor and a ball-screw based transmission system. A customized ultrasonic wave probe is installed in each flap, and is responsible for measuring wave elevation in the flap. A complex automation architecture was implemented, with three Programmable Logic Computers (PLCs), and a low-level software is responsible for all the interlocks and maintenance functions of the tank. Furthermore, all the control algorithms for the generation and absorption are implemented using higher level software (MATLAB /Simulink block diagrams). These algorithms calculate the motions of the wave makers both to generate and absorb the required wave field by taking into account the layout of the flaps and the limits of wave generation. The experimental transfer function that relates the flap amplitude to the wave elevation amplitude is used for the calculation of the motion of each flap. This paper describes the main features of the tank, followed by a detailed presentation of the whole automation system. It includes the measuring devices, signal conditioning, PLC and network architecture, real-time and synchronizing software and motor control loop. Finally, a validation of the whole automation system is presented, by means of the experimental analysis of the transfer function of the waves generated and the calculation of all the delays introduced by the automation system.