985 resultados para Human Skin Nerves
Resumo:
Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.
Resumo:
Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.^
Resumo:
The main objective of this work was to enable the recognition of human gestures through the development of a computer program. The program created captures the gestures executed by the user through a camera attached to the computer and sends it to the robot command referring to the gesture. They were interpreted in total ve gestures made by human hand. The software (developed in C ++) widely used the computer vision concepts and open source library OpenCV that directly impact the overall e ciency of the control of mobile robots. The computer vision concepts take into account the use of lters to smooth/blur the image noise reduction, color space to better suit the developer's desktop as well as useful information for manipulating digital images. The OpenCV library was essential in creating the project because it was possible to use various functions/procedures for complete control lters, image borders, image area, the geometric center of borders, exchange of color spaces, convex hull and convexity defect, plus all the necessary means for the characterization of imaged features. During the development of the software was the appearance of several problems, as false positives (noise), underperforming the insertion of various lters with sizes oversized masks, as well as problems arising from the choice of color space for processing human skin tones. However, after the development of seven versions of the control software, it was possible to minimize the occurrence of false positives due to a better use of lters combined with a well-dimensioned mask size (tested at run time) all associated with a programming logic that has been perfected over the construction of the seven versions. After all the development is managed software that met the established requirements. After the completion of the control software, it was observed that the overall e ectiveness of the various programs, highlighting in particular the V programs: 84.75 %, with VI: 93.00 % and VII with: 94.67 % showed that the nal program performed well in interpreting gestures, proving that it was possible the mobile robot control through human gestures without the need for external accessories to give it a better mobility and cost savings for maintain such a system. The great merit of the program was to assist capacity in demystifying the man set/machine therefore uses an easy and intuitive interface for control of mobile robots. Another important feature observed is that to control the mobile robot is not necessary to be close to the same, as to control the equipment is necessary to receive only the address that the Robotino passes to the program via network or Wi-Fi.
Resumo:
Burn injuries in the United States account for over one million hospital admissions per year, with treatment estimated at four billion dollars. Of severe burn patients, 30-90% will develop hypertrophic scars (HSc). Current burn therapies rely upon the use of bioengineered skin equivalents (BSEs), which assist in wound healing but do not prevent HSc. HSc contraction occurs of 6-18 months and results in the formation of a fixed, inelastic skin deformity, with 60% of cases occurring across a joint. HSc contraction is characterized by abnormally high presence of contractile myofibroblasts which normally apoptose at the completion of the proliferative phase of wound healing. Additionally, clinical observation suggests that the likelihood of HSc is increased in injuries with a prolonged immune response. Given the pathogenesis of HSc, we hypothesize that BSEs should be designed with two key anti-scarring characterizes: (1) 3D architecture and surface chemistry to mitigate the inflammatory microenvironment and decrease myofibroblast transition; and (2) using materials which persist in the wound bed throughout the remodeling phase of repair. We employed electrospinning and 3D printing to generate scaffolds with well-controlled degradation rate, surface coatings, and 3D architecture to explore our hypothesis through four aims.
In the first aim, we evaluate the impact of elastomeric, randomly-oriented biostable polyurethane (PU) scaffold on HSc-related outcomes. In unwounded skin, native collagen is arranged randomly, elastin fibers are abundant, and myofibroblasts are absent. Conversely, in scar contractures, collagen is arranged in linear arrays and elastin fibers are few, while myofibroblast density is high. Randomly oriented collagen fibers native to the uninjured dermis encourage random cell alignment through contact guidance and do not transmit as much force as aligned collagen fibers. However, the linear ECM serves as a system for mechanotransduction between cells in a feed-forward mechanism, which perpetuates ECM remodeling and myofibroblast contraction. The electrospinning process allowed us to create scaffolds with randomly-oriented fibers that promote random collagen deposition and decrease myofibroblast formation. Compared to an in vitro HSc contraction model, fibroblast-seeded PU scaffolds significantly decreased matrix and myofibroblast formation. In a murine HSc model, collagen coated PU (ccPU) scaffolds significantly reduced HSc contraction as compared to untreated control wounds and wounds treated with the clinical standard of care. The data from this study suggest that electrospun ccPU scaffolds meet the requirements to mitigate HSc contraction including: reduction of in vitro HSc related outcomes, diminished scar stiffness, and reduced scar contraction. While clinical dogma suggests treating severe burn patients with rapidly biodegrading skin equivalents, these data suggest that a more long-term scaffold may possess merit in reducing HSc.
In the second aim, we further investigate the impact of scaffold longevity on HSc contraction by studying a degradable, elastomeric, randomly oriented, electrospun micro-fibrous scaffold fabricated from the copolymer poly(l-lactide-co-ε-caprolactone) (PLCL). PLCL scaffolds displayed appropriate elastomeric and tensile characteristics for implantation beneath a human skin graft. In vitro analysis using normal human dermal fibroblasts (NHDF) demonstrated that PLCL scaffolds decreased myofibroblast formation as compared to an in vitro HSc contraction model. Using our murine HSc contraction model, we found that HSc contraction was significantly greater in animals treated with standard of care, Integra, as compared to those treated with collagen coated-PLCL (ccPLCL) scaffolds at d 56 following implantation. Finally, wounds treated with ccPLCL were significantly less stiff than control wounds at d 56 in vivo. Together, these data further solidify our hypothesis that scaffolds which persist throughout the remodeling phase of repair represent a clinically translatable method to prevent HSc contraction.
In the third aim, we attempt to optimize cell-scaffold interactions by employing an anti-inflammatory coating on electrospun PLCL scaffolds. The anti-inflammatory sub-epidermal glycosaminoglycan, hyaluronic acid (HA) was used as a coating material for PLCL scaffolds to encourage a regenerative healing phenotype. To minimize local inflammation, an anti-TNFα monoclonal antibody (mAB) was conjugated to the HA backbone prior to PLCL coating. ELISA analysis confirmed mAB activity following conjugation to HA (HA+mAB), and following adsorption of HA+mAB to the PLCL backbone [(HA+mAB)PLCL]. Alican blue staining demonstrated thorough HA coating of PLCL scaffolds using pressure-driven adsorption. In vitro studies demonstrated that treatment with (HA+mAB)PLCL prevented downstream inflammatory events in mouse macrophages treated with soluble TNFα. In vivo studies using our murine HSc contraction model suggested positive impact of HA coating, which was partiall impeded by the inclusion of the TNFα mAB. Further characterization of the inflammatory microenvironment of our murine model is required prior to conclusions regarding the potential for anti-TNFα therapeutics for HSc. Together, our data demonstrate the development of a complex anti-inflammatory coating for PLCL scaffolds, and the potential impact of altering the ECM coating material on HSc contraction.
In the fourth aim, we investigate how scaffold design, specifically pore dimensions, can influence myofibroblast interactions and subsequent formation of OB-cadherin positive adherens junctions in vitro. We collaborated with Wake Forest University to produce 3D printed (3DP) scaffolds with well-controlled pore sizes we hypothesized that decreasing pore size would mitigate intra-cellular communication via OB-cadherin-positive adherens junctions. PU was 3D printed via pressure extrusion in basket-weave design with feature diameter of ~70 µm and pore sizes of 50, 100, or 150 µm. Tensile elastic moduli of 3DP scaffolds were similar to Integra; however, flexural moduli of 3DP were significantly greater than Integra. 3DP scaffolds demonstrated ~50% porosity. 24 h and 5 d western blot data demonstrated significant increases in OB-cadherin expression in 100 µm pores relative to 50 µm pores, suggesting that pore size may play a role in regulating cell-cell communication. To analyze the impact of pore size in these scaffolds on scarring in vivo, scaffolds were implanted beneath skin graft in a murine HSc model. While flexural stiffness resulted in graft necrosis by d 14, cellular and blood vessel integration into scaffolds was evident, suggesting potential for this design if employed in a less stiff material. In this study, we demonstrate for the first time that pore size alone impacts OB-cadherin protein expression in vitro, suggesting that pore size may play a role on adherens junction formation affiliated with the fibroblast-to-myofibroblast transition. Overall, this work introduces a new bioengineered scaffold design to both study the mechanism behind HSc and prevent the clinical burden of this contractile disease.
Together, these studies inform the field of critical design parameters in scaffold design for the prevention of HSc contraction. We propose that scaffold 3D architectural design, surface chemistry, and longevity can be employed as key design parameters during the development of next generation, low-cost scaffolds to mitigate post-burn hypertrophic scar contraction. The lessening of post-burn scarring and scar contraction would improve clinical practice by reducing medical expenditures, increasing patient survival, and dramatically improving quality of life for millions of patients worldwide.
Resumo:
Melanoma is one of the most aggressive types of cancer. It originates from the transformation of melanocytes present in the epidermal/dermal junction of the human skin. It is commonly accepted that melanomagenesis is influenced by the interaction of environmental factors, genetic factors, as well as tumor-host interactions. DNA photoproducts induced by UV radiation are, in normal cells, repaired by the nucleotide excision repair (NER) pathway. The prominent role of NER in cancer resistance is well exemplified by patients with Xeroderma Pigmentosum (XP). This disease results from mutations in the components of the NER pathway, such as XPA and XPC proteins. In humans, NER pathway disruption leads to the development of skin cancers, including melanoma. Similar to humans afflicted with XP, Xpa and Xpc deficient mice show high sensibility to UV light, leading to skin cancer development, except melanoma. The Endothelin 3 (Edn3) signaling pathway is essential for proliferation, survival and migration of melanocyte precursor cells. Excessive production of Edn3 leads to the accumulation of large numbers of melanocytes in the mouse skin, where they are not normally found. In humans, Edn3 signaling pathway has also been implicated in melanoma progression and its metastatic potential. The goal of this study was the development of the first UV-induced melanoma mouse model dependent on the over-expression of Edn3 in the skin. The UV-induced melanoma mouse model reported here is distinguishable from all previous published models by two features: melanocytes are not transformed a priori and melanomagenesis arises only upon neonatal UV exposure. In this model, melanomagenesis depends on the presence of Edn3 in the skin. Disruption of the NER pathway due to the lack of Xpa or Xpc proteins was not essential for melanomagenesis; however, it enhanced melanoma penetrance and decreased melanoma latency after one single neonatal erythemal UV dose. Exposure to a second dose of UV at six weeks of age did not change time of appearance or penetrance of melanomas in this mouse model. Thus, a combination of neonatal UV exposure with excessive Edn3 in the tumor microenvironment is sufficient for melanomagenesis in mice; furthermore, NER deficiency exacerbates this process.
Resumo:
The Dirichlet distribution is a multivariate generalization of the Beta distribution. It is an important multivariate continuous distribution in probability and statistics. In this report, we review the Dirichlet distribution and study its properties, including statistical and information-theoretic quantities involving this distribution. Also, relationships between the Dirichlet distribution and other distributions are discussed. There are some different ways to think about generating random variables with a Dirichlet distribution. The stick-breaking approach and the Pólya urn method are discussed. In Bayesian statistics, the Dirichlet distribution and the generalized Dirichlet distribution can both be a conjugate prior for the Multinomial distribution. The Dirichlet distribution has many applications in different fields. We focus on the unsupervised learning of a finite mixture model based on the Dirichlet distribution. The Initialization Algorithm and Dirichlet Mixture Estimation Algorithm are both reviewed for estimating the parameters of a Dirichlet mixture. Three experimental results are shown for the estimation of artificial histograms, summarization of image databases and human skin detection.
Resumo:
Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma
Resumo:
Dissertação de Mestrado, Oncobiologia: Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016
Resumo:
Les produits cosmétiques sont des substances utilisées pour entretenir ou modifier l'aspect des parties superficielles du corps humain (telles que la peau, les ongles ou les cheveux). Dans de nombreux pays d’Afrique et d’Asie et dans certaines communautés africaines immigrantes, plusieurs femmes et parfois des hommes utilisent des produits contenant des agents actifs tels que le mercure, l’hydroquinone et le propionate de clobétasol pour éclaircir leur peau. Ces principaux agents sont toxiques et leur présence dans les cosmétiques est règlementée, voire interdite, dans plusieurs pays. Dans notre étude, nous avons déterminé les concentrations de ces ingrédients dans plusieurs produits utilisés en Afrique de l’Ouest et au Canada. Nous avons également exploré l’effet de ces produits sur le microbiome cutané. Nos résultats révèlent que 68 à 84% des crèmes et 7.5 à 65% des savons dépassent les normes lorsqu’on considère l’interdiction de mercure, d’hydroquinone et de propionate de clobétasol et les concentrations déclarées sur les étiquettes ne sont pas souvent fiables. Selon la diversité de Shannon, il semble y avoir plus d’équitabilité, et donc moins de dominance dans le groupe des femmes utilisant les crèmes éclaircissantes que dans le groupe des femmes qui ne les utilisent pas. Par ailleurs, nous n’avons pas trouvé de différences significatives au niveau du microbiome cutané du groupe avec crèmes et sans crèmes au niveau du phylum et du genre. Cependant, d’autres méthodes plus approfondies avec plus d’échantillonnage pourraient révéler à des échelles plus fines (espèces, souches, etc.) l’effet de ces produits sur le microbiome cutané.
Resumo:
Les produits cosmétiques sont des substances utilisées pour entretenir ou modifier l'aspect des parties superficielles du corps humain (telles que la peau, les ongles ou les cheveux). Dans de nombreux pays d’Afrique et d’Asie et dans certaines communautés africaines immigrantes, plusieurs femmes et parfois des hommes utilisent des produits contenant des agents actifs tels que le mercure, l’hydroquinone et le propionate de clobétasol pour éclaircir leur peau. Ces principaux agents sont toxiques et leur présence dans les cosmétiques est règlementée, voire interdite, dans plusieurs pays. Dans notre étude, nous avons déterminé les concentrations de ces ingrédients dans plusieurs produits utilisés en Afrique de l’Ouest et au Canada. Nous avons également exploré l’effet de ces produits sur le microbiome cutané. Nos résultats révèlent que 68 à 84% des crèmes et 7.5 à 65% des savons dépassent les normes lorsqu’on considère l’interdiction de mercure, d’hydroquinone et de propionate de clobétasol et les concentrations déclarées sur les étiquettes ne sont pas souvent fiables. Selon la diversité de Shannon, il semble y avoir plus d’équitabilité, et donc moins de dominance dans le groupe des femmes utilisant les crèmes éclaircissantes que dans le groupe des femmes qui ne les utilisent pas. Par ailleurs, nous n’avons pas trouvé de différences significatives au niveau du microbiome cutané du groupe avec crèmes et sans crèmes au niveau du phylum et du genre. Cependant, d’autres méthodes plus approfondies avec plus d’échantillonnage pourraient révéler à des échelles plus fines (espèces, souches, etc.) l’effet de ces produits sur le microbiome cutané.
Resumo:
In chapter one, the autoxidation kinetics of natural oil substrates, including, triglyceric sunflower oil, olive oil, terpenic squalene, and p-cymene were calibrated through differential oximetry methods. Calibration allows their use as reference oxidizable substrates for further studies, e.g. for quantitative testing of antioxidants under biomimetic settings. Several essential oils samples, of different botanical species or different productions of same species were studied for their antioxidant activity in inhibited autoxidation kinetics. Their antioxidant activities were matched with their composition analyzed by GC-MS. In chapter two, the molecular mechanism of the synergy between the common phenolic antioxidants such as tocopherol and catechols with widespread essential component gamma-terpinene was studied through lipid oxidation kinetics. Wherein, gamma-terpinene was able to disclose the key intermediacy HOO·, which acted as a reducing agent regenerating the phenolic antioxidant. This counterintuitive role of HOO· radicals was further investigated in detail and allowed to rationalize for the first time the purported antioxidant behavior of PDA melanin nanoparticles. It will also open to a deeper understanding of the redox biology of quinones. Regarding melanin, its role is broadly important in living organisms and its control, including its inhibition, is of great importance with several relevant applications ranging from food preservation to control of human skin pigmentation. In chapter three, an oximetry method combined with the traditional UV-Vis spectroscopy was developed to study the tyrosinase inhibition kinetics, which allowed identifying Glabridin (from G. glabra, L.), as one of the most effective natural tyrosinase inhibitors.
Resumo:
Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.
Resumo:
Aims The penetration of active ingredients from topically applied anti-inflammatory pharmaceutical products into tissues below the skin is the basis of their therapeutic efficacy. There is still controversy as to whether these agents are capable of direct penetration by diffusion through the tissues or whether redistribution in the systemic circulation is responsible for their tissue deposition below the application site. Methods The extent of direct penetration of salicylate from commercial ester and salt formulations into the dermal and subcutaneous tissue of human volunteers was determined using the technique of cutaneous microdialysis. We also examined differences in the extent of hydrolysis of the methylester of salicylate applied topically in human volunteers and in vitro skin diffusion cells using full-thickness skin and epidermal membranes. Results The present study showed that whilst significant levels of salicylate could be detected in the dermis and subcutaneous tissue of volunteers treated with the methylsalicylate formulation, negligible levels of salicylate were seen following application of the triethanolamine salicylate formulation. The tissue levels of salicylate from the methylsalicylate formulation were approx. 30-fold higher than the plasma concentrations. Conclusion The absorption and tissue concentration profiles for the commercial methylsalicylate formulation are indicative of direct tissue penetration and not solely redistribution by the systemic blood supply.