983 resultados para High-angular resolution diffusion imaging
Resumo:
Terrestrial remote sensing imagery involves the acquisition of information from the Earth's surface without physical contact with the area under study. Among the remote sensing modalities, hyperspectral imaging has recently emerged as a powerful passive technology. This technology has been widely used in the fields of urban and regional planning, water resource management, environmental monitoring, food safety, counterfeit drugs detection, oil spill and other types of chemical contamination detection, biological hazards prevention, and target detection for military and security purposes [2-9]. Hyperspectral sensors sample the reflected solar radiation from the Earth surface in the portion of the spectrum extending from the visible region through the near-infrared and mid-infrared (wavelengths between 0.3 and 2.5 µm) in hundreds of narrow (of the order of 10 nm) contiguous bands [10]. This high spectral resolution can be used for object detection and for discriminating between different objects based on their spectral xharacteristics [6]. However, this huge spectral resolution yields large amounts of data to be processed. For example, the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [11] collects a 512 (along track) X 614 (across track) X 224 (bands) X 12 (bits) data cube in 5 s, corresponding to about 140 MBs. Similar data collection ratios are achieved by other spectrometers [12]. Such huge data volumes put stringent requirements on communications, storage, and processing. The problem of signal sbspace identification of hyperspectral data represents a crucial first step in many hypersctral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction (DR) yelding gains in data storage and retrieval and in computational time and complexity. Additionally, DR may also improve algorithms performance since it reduce data dimensionality without losses in the useful signal components. The computation of statistical estimates is a relevant example of the advantages of DR, since the number of samples required to obtain accurate estimates increases drastically with the dimmensionality of the data (Hughes phnomenon) [13].
Resumo:
Résumé : Dans les couverts forestiers, le suivi de l’humidité du sol permet de prévenir plusieurs désastres tels que la paludification, les incendies et les inondations. Comme ce paramètre est très dynamique dans l’espace et dans le temps, son estimation à grande échelle présente un grand défi, d’où le recours à la télédétection radar. Le capteur radar à synthèse d’ouverture (RSO) est couramment utilisé grâce à sa vaste couverture et sa résolution spatiale élevée. Contrairement aux sols nus et aux zones agricoles, le suivi de l’humidité du sol en zone forestière est très peu étudié à cause de la complexité des processus de diffusion dans ce type de milieu. En effet, la forte atténuation de la contribution du sol par la végétation et la forte contribution de volume issue de la végétation réduisent énormément la sensibilité du signal radar à l’humidité du sol. Des études portées sur des couverts forestiers ont montré que le signal radar en bande C provient principalement de la couche supérieure et sature vite avec la densité de la végétation. Cependant, très peu d’études ont exploré le potentiel des paramètres polarimétriques, dérivés d’un capteur polarimétrique comme RADARSAT-2, pour suivre l’humidité du sol sur les couverts forestiers. L’effet du couvert végétal est moins important avec la bande L en raison de son importante profondeur de pénétration qui permet de mieux informer sur l’humidité du sol. L’objectif principal de ce projet est de suivre l’humidité du sol à partir de données radar entièrement polarimétriques en bandes C et L sur des sites forestiers. Les données utilisées sont celles de la campagne terrain Soil Moisture Active Passive Validation EXperiment 2012 (SMAPVEX12) tenue du 6 juin au 17 juillet 2012 au Manitoba (Canada). Quatre sites forestiers de feuillus ont été échantillonnés. L’espèce majoritaire présente est le peuplier faux-tremble. Les données utilisées incluent des mesures de l’humidité du sol, de la rugosité de surface du sol, des caractéristiques des sites forestiers (arbres, sous-bois, litières…) et des données radar entièrement polarimétriques aéroportées et satellitaires acquises respectivement, en bande L (UAVSAR) à 30˚ et 40˚ et en bande C (RADARSAT-2) entre 20˚ et 30˚. Plusieurs paramètres polarimétriques ont été dérivés des données UAVSAR et RADARSAT-2 : les coefficients de corrélation (ρHHVV, φHHVV, etc); la hauteur du socle; l’entropie (H), l’anisotropie (A) et l’angle alpha extraits de la décomposition de Cloude-Pottier; les puissances de diffusion de surface (Ps), de double bond (Pd) extraites de la décomposition de Freeman-Durden, etc. Des relations entre les données radar (coefficients de rétrodiffusion multifréquences et multipolarisations (linéaires et circulaires) et les paramètres polarimétriques) et l’humidité du sol ont été développées et analysées. Les résultats ont montré que 1) En bande L, plusieurs paramètres optimaux permettent le suivi de l’humidité du sol en zone forestière avec un coefficient de corrélation significatif (p-value < 0,05): σ[indice supérieur 0] linéaire et σ[indice supérieur 0] circulaire (le coefficient de corrélation, r, varie entre 0,60 et 0,96), Ps (r entre 0,59 et 0,84), Pd (r entre 0,6 et 0,82), ρHHHV_30˚, ρVVHV_30˚, φHHHV_30˚ and φHHVV_30˚ (r entre 0,56 et 0,81) alors qu’en bande C, ils sont réduits à φHHHV, φVVHV et φHHVV (r est autour de 0,90). 2) En bande L, les paramètres polarimétriques n’ont pas montré de valeur ajoutée par rapport aux signaux conventionnels multipolarisés d’amplitude, pour le suivi de l’humidité du sol sur les sites forestiers. En revanche, en bande C, certains paramètres polarimétriques ont montré de meilleures relations significatives avec l’humidité du sol que les signaux conventionnels multipolarisés d’amplitude.
Resumo:
Compressed covariance sensing using quadratic samplers is gaining increasing interest in recent literature. Covariance matrix often plays the role of a sufficient statistic in many signal and information processing tasks. However, owing to the large dimension of the data, it may become necessary to obtain a compressed sketch of the high dimensional covariance matrix to reduce the associated storage and communication costs. Nested sampling has been proposed in the past as an efficient sub-Nyquist sampling strategy that enables perfect reconstruction of the autocorrelation sequence of Wide-Sense Stationary (WSS) signals, as though it was sampled at the Nyquist rate. The key idea behind nested sampling is to exploit properties of the difference set that naturally arises in quadratic measurement model associated with covariance compression. In this thesis, we will focus on developing novel versions of nested sampling for low rank Toeplitz covariance estimation, and phase retrieval, where the latter problem finds many applications in high resolution optical imaging, X-ray crystallography and molecular imaging. The problem of low rank compressive Toeplitz covariance estimation is first shown to be fundamentally related to that of line spectrum recovery. In absence if noise, this connection can be exploited to develop a particular kind of sampler called the Generalized Nested Sampler (GNS), that can achieve optimal compression rates. In presence of bounded noise, we develop a regularization-free algorithm that provably leads to stable recovery of the high dimensional Toeplitz matrix from its order-wise minimal sketch acquired using a GNS. Contrary to existing TV-norm and nuclear norm based reconstruction algorithms, our technique does not use any tuning parameters, which can be of great practical value. The idea of nested sampling idea also finds a surprising use in the problem of phase retrieval, which has been of great interest in recent times for its convex formulation via PhaseLift, By using another modified version of nested sampling, namely the Partial Nested Fourier Sampler (PNFS), we show that with probability one, it is possible to achieve a certain conjectured lower bound on the necessary measurement size. Moreover, for sparse data, an l1 minimization based algorithm is proposed that can lead to stable phase retrieval using order-wise minimal number of measurements.
Resumo:
Résumé : En imagerie médicale, il est courant d’associer plusieurs modalités afin de tirer profit des renseignements complémentaires qu’elles fournissent. Par exemple, la tomographie d’émission par positrons (TEP) peut être combinée à l’imagerie par résonance magnétique (IRM) pour obtenir à la fois des renseignements sur les processus biologiques et sur l’anatomie du sujet. Le but de ce projet est d’explorer les synergies entre l’IRM et la TEP dans le cadre d’analyses pharmacocinétiques. Plus spécifiquement, d’exploiter la haute résolution spatiale et les renseignements sur la perfusion et la perméabilité vasculaire fournis par l’IRM dynamique avec agent de contraste afin de mieux évaluer ces mêmes paramètres pour un radiotraceur TEP injecté peu de temps après. L’évaluation précise des paramètres de perfusion du radiotraceur devrait permettre de mieux quantifier le métabolisme et de distinguer l’accumulation spécifique et non spécifique. Les travaux ont porté sur deux radiotraceurs de TEP (18F-fluorodésoxyglucose [FDG] et 18F-fluoroéthyle-tyrosine [FET]) ainsi que sur un agent de contraste d’IRM (acide gadopentétique [Gd DTPA]) dans un modèle de glioblastome chez le rat. Les images ont été acquises séquentiellement, en IRM, puis en TEP, et des prélèvements sanguins ont été effectués afin d’obtenir une fonction d’entrée artérielle (AIF) pour chaque molécule. Par la suite, les images obtenues avec chaque modalité ont été recalées et l’analyse pharmacocinétique a été effectuée par régions d’intérêt (ROI) et par voxel. Pour le FDG, un modèle irréversible à 3 compartiments (2 tissus) a été utilisé conformément à la littérature. Pour la FET, il a été déterminé qu’un modèle irréversible à 2 tissus pouvait être appliqué au cerveau et à la tumeur, alors qu’un modèle réversible à 2 tissus convenait aux muscles. La possibilité d’effectuer une conversion d’AIF (sanguine ou dérivée de l’image) entre le Gd DTPA et la FET, ou vice versa, a aussi été étudiée et s’est avérée faisable dans le cas des AIF sanguines obtenues à partir de l’artère caudale, comme c’est le cas pour le FDG. Finalement, l’analyse pharmacocinétique combinée IRM et TEP a relevé un lien entre la perfusion du Gd-DTPA et du FDG, ou de la FET, pour les muscles, mais elle a démontré des disparités importantes dans la tumeur. Ces résultats soulignent la complexité du microenvironnement tumoral (p. ex. coexistence de divers modes de transport pour une même molécule) et les nombreux défis rencontrées lors de sa caractérisation chez le petit animal.
Resumo:
We report the discovery of a tight substellar companion to the young solar analog PZ Tel, a member of the beta Pic moving group observed with high-contrast adaptive optics imaging as part of the Gemini Near-Infrared Coronagraphic Imager Planet-Finding Campaign. The companion was detected at a projected separation of 16.4 +/- 1.0 AU (0.'' 33 +/- 0.'' 01) in 2009 April. Second-epoch observations in 2010 May demonstrate that the companion is physically associated and shows significant orbital motion. Monte Carlo modeling constrains the orbit of PZ Tel B to eccentricities >0.6. The near-IR colors of PZ Tel B indicate a spectral type of M7 +/- 2 and thus this object will be a new benchmark companion for studies of ultracool, low-gravity photospheres. Adopting an age of 12(-4)(+8) Myr for the system, we estimate a mass of 36 +/- 6 M(Jup) based on the Lyon/DUSTY evolutionary models. PZ Tel B is one of the few young substellar companions directly imaged at orbital separations similar to those of giant planets in our own solar system. Additionally, the primary star PZ Tel A shows a 70 mu m emission excess, evidence for a significant quantity of circumstellar dust that has not been disrupted by the orbital motion of the companion.
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The canonical representation of speech constitutes a perfect reconstruction (PR) analysis-synthesis system. Its parameters are the autoregressive (AR) model coefficients, the pitch period and the voiced and unvoiced components of the excitation represented as transform coefficients. Each set of parameters may be operated on independently. A time-frequency unvoiced excitation (TFUNEX) model is proposed that has high time resolution and selective frequency resolution. Improved time-frequency fit is obtained by using for antialiasing cancellation the clustering of pitch-synchronous transform tracks defined in the modulation transform domain. The TFUNEX model delivers high-quality speech while compressing the unvoiced excitation representation about 13 times over its raw transform coefficient representation for wideband speech.
Resumo:
Background: Temporal lobe epilepsy (TLE) is a neurological disorder that directly affects cortical areas responsible for auditory processing. The resulting abnormalities can be assessed using event-related potentials (ERP), which have high temporal resolution. However, little is known about TLE in terms of dysfunction of early sensory memory encoding or possible correlations between EEGs, linguistic deficits, and seizures. Mismatch negativity (MMN) is an ERP component – elicited by introducing a deviant stimulus while the subject is attending to a repetitive behavioural task – which reflects pre-attentive sensory memory function and reflects neuronal auditory discrimination and perceptional accuracy. Hypothesis: We propose an MMN protocol for future clinical application and research based on the hypothesis that children with TLE may have abnormal MMN for speech and non-speech stimuli. The MMN can be elicited with a passive auditory oddball paradigm, and the abnormalities might be associated with the location and frequency of epileptic seizures. Significance: The suggested protocol might contribute to a better understanding of the neuropsychophysiological basis of MMN. We suggest that in TLE central sound representation may be decreased for speech and non-speech stimuli. Discussion: MMN arises from a difference to speech and non-speech stimuli across electrode sites. TLE in childhood might be a good model for studying topographic and functional auditory processing and its neurodevelopment, pointing to MMN as a possible clinical tool for prognosis, evaluation, follow-up, and rehabilitation for TLE.
Resumo:
Relatório do Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações
Resumo:
The overall goal of the REMPLI project is to design and implement a communication infrastructure for distributed data acquisition and remote control operations using the power grid as the communication medium. The primary target application is remote meter reading with high time resolution, where the meters can be energy, heat, gas, or water meters. The users of the system (e.g. utility companies) will benefit from the REMPLI system by gaining more detailed information about how energy is consumed by the end-users. In this context, the power-line communication (PLC) is deployed to cover the distance between utility company’s Private Network and the end user. This document specifies a protocol for real-time PLC, in the framework of the REMPLI project. It mainly comprises the Network Layer and Data Link Layer. The protocol was designed having into consideration the specific aspects of the network: different network typologies (star, tree, ring, multiple paths), dynamic changes in network topology (due to network maintenance, hazards, etc.), communication lines strongly affected by noise.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau em Mestre em Engenharia Física
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Área de especialização: Intervenção cardiovascular
Resumo:
The application of compressive sensing (CS) to hyperspectral images is an active area of research over the past few years, both in terms of the hardware and the signal processing algorithms. However, CS algorithms can be computationally very expensive due to the extremely large volumes of data collected by imaging spectrometers, a fact that compromises their use in applications under real-time constraints. This paper proposes four efficient implementations of hyperspectral coded aperture (HYCA) for CS, two of them termed P-HYCA and P-HYCA-FAST and two additional implementations for its constrained version (CHYCA), termed P-CHYCA and P-CHYCA-FAST on commodity graphics processing units (GPUs). HYCA algorithm exploits the high correlation existing among the spectral bands of the hyperspectral data sets and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. The proposed P-HYCA and P-CHYCA implementations have been developed using the compute unified device architecture (CUDA) and the cuFFT library. Moreover, this library has been replaced by a fast iterative method in the P-HYCA-FAST and P-CHYCA-FAST implementations that leads to very significant speedup factors in order to achieve real-time requirements. The proposed algorithms are evaluated not only in terms of reconstruction error for different compressions ratios but also in terms of computational performance using two different GPU architectures by NVIDIA: 1) GeForce GTX 590; and 2) GeForce GTX TITAN. Experiments are conducted using both simulated and real data revealing considerable acceleration factors and obtaining good results in the task of compressing remotely sensed hyperspectral data sets.
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.