946 resultados para Heavy-metal separation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on sewage sludge (SS) have confirmed the possibilities of using this waste as fertilizer and/or soil conditioner in crop production areas. Despite restrictions with regard to the levels of potentially toxic elements (PTE) and pathogens, it is believed that properly treated SS with low PTE levels, applied to soil at adequate rates, may improve the soil chemical and microbiological properties. This study consisted of a long-term field experiment conducted on a Typic Haplorthox (eutroferric Red Latosol) treated with SS for seven successive years for maize production, to evaluate changes in the soil chemical and microbiological properties. The treatments consisted of two SS rates (single and double dose of the crop N requirement) and a mineral fertilizer treatment. Soil was sampled in the 0-0.20 m layer and analyzed for chemical properties (organic C, pH, P, K, Ca, Mg, CEC, B, Cu, Fe, Mn, Zn, Cd, Ni, and Pb) and microbiological properties (basal respiration, microbial biomass activity, microbial biomass C, metabolic quotient, microbial quotient, and protease and dehydrogenase enzyme activities). Successive SS applications to soil increased the macro- and micronutrient availability, but the highest SS dose reduced the soil pH significantly, indicating a need for periodic corrections. The SS treatments also affected soil microbial activity and biomass negatively. There were no significant differences among treatments for maize grain yield. After seven annual applications of the recommended sludge rate, the heavy metal levels in the soil had not reached toxic levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The application of organic wastes to agricultural soils is not risk-free and can affect soil invertebrates. Ecotoxicological tests based on the behavioral avoidance of earthworms and springtails were performed to evaluate effects of different fertilization strategies on soil quality and habitat function for soil organisms. These tests were performed in soils treated with: i) slurry and chemical fertilizers, according to the conventional fertilization management of the region, ii) conventional fertilization + sludge and iii) unfertilized reference soil. Both fertilization strategies contributed to soil acidity mitigation and caused no increase in soil heavy metal content. Avoidance test results showed no negative effects of these strategies on soil organisms, compared with the reference soil. However, results of the two fertilization managements differed: Springtails did not avoid soils fertilized with dairy sludge in any of the tested combinations. Earthworms avoided soils treated with sludge as of May 2004 (DS1), when compared with conventional fertilization. Possibly, the behavioral avoidance of earthworms is more sensitive to soil properties (other than texture, organic matter and heavy metal content) than springtails

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC) rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emergence (DAE) was greater in the TSC-amended than in the unamended soil. In the sandy soil, nodule dry weight increased with TSC application 45 DAE. In the clayey soil, 45 DAE, nodule dry weight decreased with TSC amendment levels greater than 7.5 t ha-1 compared to the unamended control. The application of TSC increased N accumulation in the cowpea plants. The results suggest that cowpea responds differently to TSC depending on the amendment rate and initial soil type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In hydrosedimentology studies the determination of the trace element concentrations at the study site is imperative, since this background can be used to assess the enrichment of sediments with these elements. This enrichment can be the result of the natural process of geological formation or of anthropogenic activities. In the latter case, guidelines are used to indicate the concentrations at which trace elements cause ecotoxicity effects on the environment. Thus, this study used legal reserve areas in the municipality of Toledo, PR, where natural forests are maintained, with no or minimal human interference to establish background levels. The results of atomic emission spectrometry with inductively coupled argon plasma showed that the legal reserves have lower levels of trace elements than other theoretical references, but equivalent concentrations to the safety levels recommended by international guidelines. It was concluded that determining values is fundamental to recommend this background as scientific database for research in the area of hydrosedimentology of this site and also as a way of environmental management of the watershed of this municipality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Activation of microglia is a well-documented phenomenon associated with diverse pathological conditions of the central nervous system. In order to investigate the involvement of microglial cells in the neurotoxic action of the heavy metal compound trimethyltin, three-dimensional brain cell cultures were treated during an early developmental period, using concentrations at or below the limit of cytotoxicity. Microglial cells were studied by cytochemical staining, using horseradish peroxidase-conjugated B4 isolectin (GSI-B4). In parallel, neurotoxic effects were assessed by determining the content of synaptophysin and synapsin I, both in the total homogenates and in the synaptosomal fraction of the cultures. Changes in the content of the specific growth cone protein, GAP-43, were also analyzed. It was found that low, non-cytotoxic concentrations of TMT (10(-9) to 10(-8) M) caused a significant increase in the number and/or the clustering of microglial cells. A decrease in the synaptic protein (synapsin I, synaptophysin) content was detected at 10(-8) M of TMT in synaptosomal fractions, whereas in the total homogenates, changes in synaptic proteins and GAP-43 were observed only at the cytotoxic TMT concentration (10(-6) M). Although it remains to be shown whether the microglial response is caused by direct or indirect action of TMT, the present findings show that microglial responsiveness can be detected prior to any sign of neuronal degeneration, and may serve as a sensitive indicator for heavy metal neurotoxicity in the brain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasmids have long been recognized as an important driver of DNA exchange and genetic innovation in prokaryotes. The success of plasmids has been attributed to their independent replication from the host's chromosome and their frequent self-transfer. It is thought that plasmids accumulate, rearrange and distribute nonessential genes, which may provide an advantage for host proliferation under selective conditions. In order to test this hypothesis independently of biases from culture selection, we study the plasmid metagenome from microbial communities in two activated sludge systems, one of which receives mostly household and the other chemical industry wastewater. We find that plasmids from activated sludge microbial communities carry among the largest proportion of unknown gene pools so far detected in metagenomic DNA, confirming their presumed role of DNA innovators. At a system level both plasmid metagenomes were dominated by functions associated with replication and transposition, and contained a wide variety of antibiotic and heavy metal resistances. Plasmid families were very different in the two metagenomes and grouped in deep-branching new families compared with known plasmid replicons. A number of abundant plasmid replicons could be completely assembled directly from the metagenome, providing insight in plasmid composition without culturing bias. Functionally, the two metagenomes strongly differed in several ways, including a greater abundance of genes for carbohydrate metabolism in the industrial and of general defense factors in the household activated sludge plasmid metagenome. This suggests that plasmids not only contribute to the adaptation of single individual prokaryotic species, but of the prokaryotic community as a whole under local selective conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Case Report: A 19 year old female, originally from Cameroon, residentin Switzerland for 10 years, consults for chronic fatigue, constipationand menorrhagia. Clinical examination reveals pain in the iliac fossa,laboratory tests show an iron deficiency anaemia with a hemoglobinof 74 g/l (N: 117-157) and a ferritin less than 3 μg/l (N: 30-300).Gynecological aetiology is strongly suspected.Findings: The dietary history reveals a high intake of African chalkcalled "Mabel" in Lingala, for which she has a craving with criteria forsubstance dependence according to the Diagnostic and StatisticalManual IV. Eating non-food products is called "PICA" and the eatingof earth "geophagia". It is often assumed by the patient that geophagiaoffers nutritional virtues of the earth, and that the land would act asantitoxic, anti-emetic, immune-stimulant, strengthen the intestinalbarrier and be rich in calcium, iron and many nutrients. But insteadgeophagia causes anemia, iron chelation, heavy metal poisoningand significant constipation or obstruction.Management: The patient, following our advice, stopped ingestingchalk. Parenteral iron substitution of ferric carboxymaltose 1000 mgstopped the craving, and resolved her subjective state of fatigue andher haemoglobin normalized to 140 g/l. The menorrhagia resolved withhormone replacement and the constipation subsequently disappeared.Discussion: Our patient was suffering from iron deficiency resulting ina craving for non-food products in this case the earth. We advisepractitioners to systematically ask the question in patients of Africanand South American origin by using synonyms for the word "Mabel"(African chalk, kaolin, Kalaba, calabash chalk, calabash Stone, Kaolin,hurdle, or clay Nzu). A simple question can sometimes avoid costlyinvestigations. The ferrous replacement intravenously can probably stopthe practice of geophagy faster. Finally, we must remember that thispractice is underestimated and rarely expressed by patients as it isoften felt to be a shameful practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Thesis abstract Mine waste is the largest volume of materials handled in the world. The oxidation of sulfidic mine waste may result in the release of acid mine drainage (AMD) rich in heavy metals and arsenic to the environment, one of the major problems the mining industry is facing today. To control and reduce this environmental impact, it is crucial to identify the main geochemical and hydrological processes influencing contaminant liberation, transport, and retention. This thesis presents the results of a geochemical, mineralogical and stable isotope study (δ2H, δ18O, δ34S) from two active porphyry copper tailings impoundments in Mediterranean (Carén tailings impoundment, El Teniente mine, Central Chile) and hyper-arid climate (Talabre tailings impoundment, Chuquicamata, Northern Chile) from the deposition in alkaline environment (pH 10.5) towards acidification after several years of exposure. The major hydrological results were the identification of vertical contaminant and water transport in the uppermost, not water-saturated zone, triggered by capillary rise due to evaporation, and infiltration downwards due to new tailings deposition, and of horizontal transport in the groundwater zone. At the surface of the sedimented tailings, evaporation of pore water led to the precipitation of Na-Ca-Mg sulfates (e.g., gypsum, tenorite), in hyper-arid climate also halite. At the Carén tailings impoundment, renewed deposition in a 4-week interval inhibited a pH decrease below neutral values and the formation of an efflorescent salt crust. At the Talabre tailings impoundment, deposition breaks of several years resulted in the formation of acidic oxidation zones in the timeframe of less than 4 years. This process enabled the transport of liberated Cu, Zn, and Fe via capillary rise to the surface, where these metals precipitated as heavy-metal sulfates (e.g., devilline, krohnkite) and chlorides (eriochalcite, atacamite). Renewed depositing may dissolve efflorescent salts and transport liberated elements towards the groundwater zone. This zone was found to be highly dynamic due to infiltration and mixing with water from different sources, like groundwater, catchment water, and infiltration from superficial waters. There, Cu was found to be partially mobile due to complexation with Cl (in Cl-rich groundwater, Talabre) and dissolved organic matter (in zones with infiltration of catchment water rich in dissolved organic matter, Carén). A laboratory study on the isotopic fractionation of sulfur and oxygen of sulfate in different minerals groups (water-soluble sulfates, low- and high-crystalline Fe(III) oxyhydroxides) contributed to the use of stable isotopes as tracer of geochemical and transport processes for environmental studies. The results highlight that a detailed geochemical, stable isotope and mineralogical study permits the identification of contamination processes and pathways already during the deposition of mine tailings. This knowledge allows the early planning of adequate actions to reduce and control the environmental impact during tailings deposition and after the closing of the impoundment. J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Résumé de these Les déchets miniers constituent les plus grands volumes de matériel gérés dans le monde. L'oxydation des déchets miniers sulfuriques peut conduire à la libération de drainages miniers acides (DMA) riches en métaux et arsenic dans l'environnement, ce qui est l'un des principaux problèmes de l'industrie minière aujourd'hui. Pour contrôler et réduire ces impacts sur l'environnement, il est crucial d'identifier les principaux processus géochimiques et hydrologiques influençant la libération, le transport et la rétention des contaminants. Cette thèse présente les résultats d'une étude géochimique, minéralogique et des isotopes stables (δ2H, δ18O, δ34S) sur des déchets miniers de 2 sites de dépôt actifs en climat méditerranéen (Dépôt de déchets de Carén, mine de El Teniente, Centre du Chili) et en climat hyper-aride (Dépôt de déchets de Talabre, mine de Chuquicamata, Nord du Chili). L'objectif était d'étudier l'évolution des déchets de la déposition en milieu alcalin (pH = 10.5) vers l'acidification après plusieurs années d'exposition. Le principal résultat hydrologique a été l'identification de 2 types de transport : un transport vertical de l'eau et des contaminants dans la zone non saturée en surface, induit par la montée capillaire due à l'évaporation et par l'infiltration subséquente de la déposition de sédiments frais ; et un transport horizontal dans la zone des eaux souterraines. À la surface des déchets, l'évaporation de l'eau interstitielle conduit à la précipitation de sulfates de Na-Ca-Mg (ex. gypse, ténorite) et halite en climat hyper-aride. Dans le site de Carén, une nouvelle déposition de déchets frais à 4 semaines intervalle a empêché la baise du pH en deçà des valeurs neutres et la formation d'une croûte de sels efflorescentes en surface. Dans le site de Talabre, les fentes de dessiccation des dépôts ont entraîné la formation d'une zone d'oxydation à pH acide en moins de 4 ans. Ce processus a permis la libération et le transport par capillarité de Cu, Zn, Fe vers la surface, où ces éléments précipitent sous forme de sulfates de métaux lourds (ex., dévilline, krohnkite) de chlorures (ex. ériochalcite, atacamite). Une nouvelle déposition de sédiments frais pourrait dissoudre ces sels et les transporter vers la zone des eaux souterraines. Cette dernière zone était très dynamique en raison du mélange d'eaux provenant de différentes sources, comme les eaux souterraines, l'eau de captage et l'infiltration des eaux superficielles. Egalement dans cette zone, le cuivre était partiellement mobile à cause de la formation de complexe avec le chlore (dans les zone riche en Cl, Talabre) et avec la matière organique dissoute (dans les zones où s'infiltre l'eau de captage riche en matière organique, Carén). Une étude en laboratoire sur le fractionnement des isotopes stables de sulfure et d'oxygène des sulfates dans différents groupes de minéraux (sulfates hydrosolubles, sulfures de oxy-hydroxyde de Fe(III) faiblement ou fortement cristallins) a permis d'apporter une contribution à leur utilisation comme traceurs dans l'étude des processus géochimiques et de transport lors d'études environnementales. Les résultats montrent qu'une étude détaillée de la géochimie, des isotopes stables et de la minéralogie permet d'identifier les processus et les voies de contamination déjà pendant la période de dépôt des déchets miniers. Cette connaissance permet de planifier, dès le début de l'exploitation, des mesures adéquates pour réduire et contrôler l'impact sur l'environnement pendant la période de dépôts de déchets miniers et après la fermeture du site.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: There are limited data on the composition and smoke emissions of 'herbal' shisha products and the air quality of establishments where they are smoked. METHODS: Three studies of 'herbal' shisha were conducted: (1) samples of 'herbal' shisha products were chemically analysed; (2) 'herbal' and tobacco shisha were burned in a waterpipe smoking machine and main and sidestream smoke analysed by standard methods and (3) the air quality of six waterpipe cafes was assessed by measurement of CO, particulate and nicotine vapour content. RESULTS: We found considerable variation in heavy metal content between the three products sampled, one being particularly high in lead, chromium, nickel and arsenic. A similar pattern emerged for polycyclic aromatic hydrocarbons. Smoke emission analyses indicated that toxic byproducts produced by the combustion of 'herbal' shisha were equivalent or greater than those produced by tobacco shisha. The results of our air quality assessment demonstrated that mean PM2.5 levels and CO content were significantly higher in waterpipe establishments compared to a casino where cigarette smoking was permitted. Nicotine vapour was detected in one of the waterpipe cafes. CONCLUSIONS: 'Herbal' shisha products tested contained toxic trace metals and PAHs levels equivalent to, or in excess of, that found in cigarettes. Their mainstream and sidestream smoke emissions contained carcinogens equivalent to, or in excess of, those of tobacco products. The content of the air in the waterpipe cafes tested was potentially hazardous. These data, in aggregate, suggest that smoking 'herbal' shisha may well be dangerous to health.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Työn tarkoituksena oli selvittää Alstom Finland Oy:n pääasiakkaiden ympäristö-lupatilanne sekä tarkastella, miten Alstomin toimittamat hiukkastenpuhdistuslait-teet täyttävät muuttavat lainsäädännön vaatimukset. Lisäksi työssä arvioitiin lai-tosten hiukkaspäästöjen vähentämisestä syntyvää savukaasunpuhdistuslaitteiden investointitarvetta. Työn teoriaosuus sisältää katsauksen ympäristölupakäytäntöön sekä Valtioneu-voston asetuksiin, jotka koskevat laitosten hiukkaspäästöjä. Lisäksi työssä on kä-sitelty parhaan käytettävissä olevan tekniikan mukaisia hiukkaspäästörajoja ja tekniikoita sekä hiukkasten muodostumista että raskasmetallien sitoutumista hiukkasiin. Kaikkiaan työssä mukana olevia laitoksia oli 49, joista tarkemmin tarkasteltiin 12 laitosta. Suurin osa laitoksista ei ollut saanut tai hakenut ympäristönsuojelulain mukaista ympäristölupaa, joten niillä on velvollisuus hakea lupaa siirtymäsään-nöksen mukaisesti vuoden 2004 loppuun mennessä. Tarkemmassa tarkastelussa olevien laitosten hiukkaspäästömittaustuloksia vertailtiin nykyisiin sekä uu-siin/oletettuihin ympäristölupien hiukkaspäästörajoihin. Tarkastelussa mukana olevasta seitsemästä soodakattilalaitoksesta, joilla ei vielä ollut uutta ympäristölu-paa, 43 % ylitti arvioidun uuden luparajan 50 mg/m3(n):ssa ja kolmesta meesauu-nia käyttävästä laitoksesta yksi sekä viidestä muusta kattilasta kaksi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A total of over 200 different samples of bark and wood of Silver birch, Norway spruce and Scots pine were analysed. Samples were taken from several areas in western Finland, some with known sources of atmospheric heavy metal emission (Harjavalta, Ykspihlaja). Also analytical data for pine needles from some sites are reported. The chemical analyses were performed by thick-target particle-induced X-ray emission (PIXE) spectrometry after preconcentration by dry ashing of samples at 550oC. The following elements were quantified in most of the samples: P, S, K, Ca, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Cd, Ba and Pb. The ash percentage and the chemical composition of ashes of different wood materials were also obtained, as dry ashing was used in the analytical procedure. The variations in elemental concentrations in wood and bark of an individual tree, expressed as RSDs, were mostly in the range 10 – 20 %. For several trees of the same species sampled from small areas (< 1 ha), the variations in elemental concentrations were surprisingly high (RSDs 20 – 50 %). In the vicinity of metal plants, effects of strong atmospheric heavy metal pollution (pollution factor above 100) were observed in pine bark. The increase of heavy metal content in wood samples from the same sites was quite small. Elemental concentrations in ashes of bark and wood, from areas with no local source of atmospheric pollution, were relatively uniform. Based on this observation an alternative way of demonstrating atmospheric pollution of tree bark is discussed.