976 resultados para HIGH MAGNETIC-FIELD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Shubnikov-de Haas (SdH) oscillation measurement was performed on highly doped InAlAs/InGaAs metamorphic high-electron-mobility transistors on GaAs substrates at a temperature of 1.4 K. By analyzing the experimental data using fast Fourier transform, the electron densities and mobilities of more than one subband are obtained, and an obvious double-peak structure appears at high magnetic field in the Fourier spectrum. In comparing the results of SdH measurements, Hall measurements, and theoretical calculation, we found that this double-peak structure arises from spin splitting of the first-excited subband (i=1). Very close mobilities of 5859 and 5827 cm(2)/V s are deduced from this double-peak structure. The sum of the carrier concentration of all the subbands in the quantum well is only 3.95x10(12) cm(-2) due to incomplete transfer of the electrons from the Si delta -doped layer to the well. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the influence of transverse magnetic field B up to 14 T at 1.6 K on the tunneling processes of electric field domains in doped weakly coupled GaAs/AlAs superlattices. Three regimes, i.e, stable field domains, current self-sustained oscillations and averaged field distribution are successively observed with increasing B. The mechanisms of switching-over among these regimes are due to B-induced modification of the dependence of the effective electron drift velocity on electric field. The simulated calculation gives a good agreement with the observed experimental results. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the influence of a transverse magnetic field on the current-voltage characteristics of a doped GaAs/AlAs superlattice at 1.6 K. The current transport regimes-stable electric field domain formation and current selfoscillation-are observed with increasing transverse magnetic field up to 13 T. Magnetic-field-induced redistribution of electron momentum and energy is identified as the mechanism triggering the switching over of one process to another lending to a change in the dependence of the effective electron drift velocity on electric field. Simulation yields excellent agreement with observed results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of an InAs self-assembled quantum dot in the presence of a perpendicular magnetic field is investigated theoretically. The effect of finite offset, valence-band mixing, and strain are taken into account. The hole levels show strong anticrossings. The large strain and strong magnetic field decrease the effect of mixing between heavy hole and light hole. The hole energy levels have in general a weaker field dependence compared with the corresponding uncoupled levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When an intersubband relaxation is involved in vertical transport in a tunneling heterostructure, the magnetic suppression of the intersubband LO or LA phonon scattering may also give rise to a noticeable depression of the resonant tunneling current, unrelated to the Coulomb correlation effect. The slowdown of the intersubband scattering rate makes fewer electrons able to tunnel resonantly between two adjacent quantum wells (QWs) in a three-barrier, two-well heterostructure. The influence of the magnetic field on the intersubband relaxation can be studied in an explicit way by a physical model based on the dynamics of carrier populations in the ground and excited subbands of the incident QW. (C) 1998 American Institute of Physics. [S0003-6951(98)00925-5].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic state of a two-dimensional electron system (2DES) in the presence of a perpendicular uniform magnetic field and a lateral superlattice (LS) is investigated theoretically. A comparative study is made between a LS induced by a spatial electrostatic potential modulation (referred to as a PMLS) and that induced by a spatial magnetic-field modulation (referred ro asa MMLS). By utilizing a finite-temperature self-consistent Hartree-Fock approximation scheme; the dependence of the electronic state on different system parameters (e.g., the modulation period, the modulation strength, the effective electron-electron interaction strength, the averaged electron density, and the system temperature) is studied in detail. The inclusion of exchange effect is found to bring qualitative changes to the electronic state of a PMLS, leading generally to a nonuniform spin splitting, and consequently the behavior of the electronic state becomes similar to that of a MMLS. The Landau-level coupling is taken into account, and is found to introduce some interesting features not observed before. It is also found that, even in the regime of intermediate modulation strength, the density dependence of the spin splitting of energy levels, either for a PMLS or a MMLS, can be qualitatively understood within the picture of a 2DES in a perpendicular magnetic field with the modulation viewed as a perturbation. [S0163-1829(97)02248-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the effect of image forces, arising due to a difference in dielectric permeabilities of the well layer and barrier layers, on the energy spectrum of an electron confined in a rectangular potential well under a magnetic field. Depending on the value and the sign of the dielectric mismatch, image forces can localize electrons near the interfaces of the well or in well centre and change the direct intersubband gaps into indirect ones. These effects can be controlled by variation of the magnetic field, offering possibilities for exact tuning of electronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theoretical treatment of magnetic levels formed in the minibands of superlattices under an in-plane magnetic field is discussed. It is found that the results of semiclassical and envelope-function treatments based on miniband structures are in good agreement with the results calculated strictly by the quantum-mechanical method, so long as the critical parameter 2hc/eBL2 is larger than 1. The wave functions obtained are in the nature of superlattice envelope functions, which are over and above the usual effective-mass envelope functions for bulk materials.