998 resultados para Green Lake - Maine
Resumo:
This thesis discusses the prehistoric human disturbance during the Holocene by means of case studies using detailed high-resolution pollen analysis from lake sediment. The four lakes studied are situated between 61o 40' and 61o 50' latitudes in the Finnish Karelian inland area and vary between 2.4 and 28.8 ha in size. The existence of Early Metal Age population was one important question. Another study question concerned the development of grazing, and the relationship between slash-and-burn cultivation and permanent field cultivation. The results were presented as pollen percentages and pollen concentrations (grains cm 3). Accumulation values (grains cm 2 yr 1) were calculated for Lake Nautajärvi and Lake Orijärvi sediment, where the sediment accumulation rate was precisely determined. Sediment properties were determined using loss-on-ignition (LOI) and magnetic susceptibility (k). Dating methods used include both conventional and AMS 14C determinations, paleomagnetic dating and varve choronology. The isolation of Lake Kirjavalampi on the northern shore of Lake Ladoga took place ca. 1460 1300 BC. The long sediment cores from Finland, Lake Kirkkolampi and Lake Orijärvi in southeastern Finland and Lake Nautajärvi in south central Finland all extended back to the Early Holocene and were isolated from the Baltic basin ca. 9600 BC, 8600 BC and 7675 BC, respectively. In the long sediment cores, the expansion of Alnus was visible between 7200 - 6840 BC. The spread of Tilia was dated in Lake Kirkkolampi to 6600 BC, in Lake Orijärvi to 5000 BC and at Lake Nautajärvi to 4600 BC. Picea is present locally in Lake Kirkkolampi from 4340 BC, in Lake Orijärvi from 6520 BC and in Lake Nautajärvi from 3500 BC onwards. The first modifications in the pollen data, apparently connected to anthropogenic impacts, were dated to the beginning of the Early Metal Period, 1880 1600 BC. Anthropogenic activity became clear in all the study sites by the end of the Early Metal Period, between 500 BC AD 300. According to Secale pollen, slash-and-burn cultivation was practised around the eastern study lakes from AD 300 600 onwards, and at the study site in central Finland from AD 880 onwards. The overall human impact, however, remained low in the studied sites until the Late Iron Age. Increasing human activity, including an increase in fire frequency was detected from AD 800 900 onwards in the study sites in eastern Finland. In Lake Kirkkolampi, this included cultivation on permanent fields, but in Lake Orijärvi, permanent field cultivation became visible as late as AD 1220, even when the macrofossil data demonstrated the onset of cultivation on permanent fields as early as the 7th century AD. On the northern shore of Lake Ladoga, local activity became visible from ca. AD 1260 onwards and at Lake Nautajärvi, sediment the local occupation was traceable from 1420 AD onwards. The highest values of Secale pollen were recorded both in Lake Orijärvi and Lake Kirjavalampi between ca. AD 1700 1900, and could be associated with the most intensive period of slash-and-burn from AD 1750 to 1850 in eastern Finland.
Resumo:
High levels of percentage green veneer recovery can be obtained from temperate eucalypt plantations. Recovery traits are affected by site and log position in the stem. Of the post-felling log traits studied, out-of-roundness was the best predictor of green recovery.
Resumo:
Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.
Resumo:
Diaporthe (syn. Phomopsis) species are well-known saprobes, endophytes or pathogens on a range of plants. Several species have wide host ranges and multiple species may sometimes colonise the same host species. This study describes eight novel Diaporthe species isolated from live and/or dead tissue from the broad acre crops lupin, maize, mungbean, soybean and sunflower, and associated weed species in Queensland and New South Wales, as well as the environmental weed bitou bush (Chrysanthemoides monilifera subsp. rotundata) in eastern Australia. The new taxa are differentiated on the basis of morphology and DNA sequence analyses based on the nuclear ribosomal internal transcribed spacer region, and part of the translation elongation factor-1α and ß-tubulin genes. The possible agricultural significance of live weeds and crop residues ('green bridges') as well as dead weeds and crop residues ('brown bridges') in aiding survival of the newly described Diaporthe species is discussed.
Resumo:
This thesis examines green marketing and green consumption behaviours addressing limited understandings about how consumers interpret their green consumption behaviour in their everyday lives; what motivates people to purchase green products, and what barriers exist to this behaviour. Findings reveal that enhancing green consumption through green marketing depends on consumers' enthusiasm to engage in green practices and green behavioural influences. The research supports the need for qualitative research to provide rich insights into relationships between consumer behaviour, green marketing and green consumption and builds a stronger knowledge foundation by introducing social practice theory into the marketing discipline.
Resumo:
We describe here a rapid, energy-efficient, green and economically scalable room temperature protocol for the synthesis of silver nanoparticles. Tannic acid, a polyphenolic compound derived from plant extracts is used as the reducing agent. Silver nanoparticles of mean size ranging from 3.3 to 22.1 nm were synthesized at room temperature by the addition of silver nitrate to tannic acid solution maintained at an alkaline pH. The mean size was tuned by varying the molar ratio of tannic acid to silver nitrate. We also present proof of concept results demonstrating its suitability for room temperature continuous flow processing.
Resumo:
Gas fermentation using acetogenic bacteria offers a promising route for the sustainable production of low carbon fuels and commodity chemicals from abundant, inexpensive C1 feedstocks including industrial waste gases, syngas, reformed methane or methanol. Clostridium autoethanogenum is a model gas fermenting acetogen that produces fuel ethanol and 2,3-butanediol, a precursor for nylon and rubber. Acetogens have already been used in large scale industrial fermentations, they are ubiquitous and known to play a prominent role in the global carbon cycle. Still, they are considered to live on the thermodynamic edge of life and potential energy constraints when growing on C1 gases pose a major challange for the commercial production of fuels and chemicals. We have developed a systematic platform to investigate acetogenic energy metabolism, exemplified here by experiments contrasting heterotrophic and autotrophic metabolism. The platform is built from complete omics technologies, augmented with genetic tools and complemented by a manually curated genome-scale mathematical model. Together the tools enable the design and development of new, energy efficient pathways and strains for the production of chemicals and advanced fuels via C1 gas fermentation. As a proof-of-platform, we investigated heterotrophic growth on fructose versus autotrophic growth on gas that demonstrate the role of the Rnf complex and Nfn complex in maintaining growth using the Wood–Ljungdahl pathway. Pyruvate carboxykinase was found to control the rate-limiting step of gluconeogenesis and a new specialized glyceraldehyde-3-phosphate dehydrogenase was identified that potentially enhances anabolic capacity by reducing the amount of ATP consumed by gluconeogenesis. The results have been confirmed by the construction of mutant strains.
Resumo:
In lake ecosystems, both fish and invertebrate predators have dramatic effects on their prey communities. Fish predation selects large cladocerans while invertebrate predators prefer prey of smaller size. Since invertebrate predators are the preferred food items for fish, their occurrence at high densities is often connected with the absence or low number of fish. It is generally believed that invertebrate predators can play a significant role only if the density of planktivorous fish is low. However, in eutrophic clay-turbid Lake Hiidenvesi (southern Finland), a dense population of predatory Chaoborus flavicans larvae coexists with an abundant fish population. The population covers the stratifying area of the lake and attains a maximum population density of 23000 ind. m-2. This thesis aims to clarify the effects of Chaoborus flavicans on the zooplankton community and the environmental factors facilitating the coexistence of fish and invertebrate predators. In the stratifying area of Lake Hiidenvesi, the seasonal succession of cladocerans was exceptional. The spring biomass peak of cladocerans was missing and the highest biomass occurred in midsummer. In early summer, the consumption rate by chaoborids clearly exceeded the production rate of cladocerans and each year the biomass peak of cladocerans coincided with the minimum chaoborid density. In contrast, consumption by fish was very low and each study year cladocerans attained maximum biomass simultaneously with the highest consumption by smelt (Osmerus eperlanus). The results indicated that Chaoborus flavicans was the main predator of cladocerans in the stratifying area of Lake Hiidenvesi. The clay turbidity strongly contributed to the coexistence of chaoborids and smelt at high densities. Turbidity exceeding 30 NTU combined with light intensity below 0.1 μE m-2 s-1provides an efficient daytime refuge for chaoborids, but turbidity alone is not an adequate refuge unless combined with low light intensity. In the non-stratifying shallow basins of Lake Hiidenvesi, light intensity exceeds this level during summer days at the bottom of the lake, preventing Chaoborus forming a dense population in the shallow parts of the lake. Chaoborus can be successful particularly in deep, clay-turbid lakes where they can remain high in the water column close to their epilimnetic prey. Suspended clay alters the trophic interactions by weakening the link between fish and Chaoborus, which in turn strengthens the effect of Chaoborus predation on crustacean zooplankton. Since food web management largely relies on manipulations of fish stocks and the cascading effects of such actions, the validity of the method in deep clay-turbid lakes may be questioned.