917 resultados para Generalized Least Squares Estimation
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies have been carried out on the heat transfer in a packed bed of glass beads percolated by air at moderate flow rates. Rigorous statistic analysis of the experimental data was carried out and the traditional two parameter model was used to represent them. The parameters estimated were the effective radial thermal conductivity, k, and the wall coefficient, h, through the least squares method. The results were evaluated as to the boundary bed inlet temperature, T-o, number of terms of the solution series and number of experimental points used in the estimate. Results indicated that a small difference in T-o was sufficient to promote great modifications in the estimated parameters and in the statistical properties of the model. The use of replicas at points of high parametric information of the model improved the results, although analysis of the residuals has resulted in the rejection of this alternative. In order to evaluate cion-linearity of the model, Bates and Watts (1988) curvature measurements and the Box (1971) biases of the coefficients were calculated. The intrinsic curvatures of the model (IN) tend to be concentrated at low bed heights and those due to parameter effects (PE) are spread all over the bed. The Box biases indicated both parameters as responsible for the curvatures PE, h being somewhat more problematic. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.
Resumo:
Associations between four microsatellite markers on chromosome 11 and five on chromosome 13 with performance, carcass and organs traits were investigated in chickens using a least-squares approach applied to single-marker analysis. Three hundred and twenty seven F 2 chickens from the EMBRAPA broiler×layer experimental population were evaluated for 16 traits: five related to performance, five to carcass and five to organs, plus the hematocrit. Two significance thresholds were considered: p<0.05 and p<0.0056; the last value resulted from the application of a multiple tests analyses correction. On chromosome 11, six associations (p<0.05) between the genotypes of two markers with four growth related and one carcass trait were found. On chromosome 13, six associations (p<0.05) between marker genotypes and three performance traits, eight associations (p<0.05) between marker genotypes and two carcass traits and eight associations (p<0.05) between marker genotypes and four organs traits were detected. These associations were indications of the presence of quantitative trait loci on these chromosomes, especially on chromosome 13. In this chromosome, the strongest evidence was for body weight at 41 days of age and percentage of carcass because the p-values exceeded the multiple test threshold (p<0.0056), but also for breast percentage and heart weight due to the large number of markers (four) on chromosome 13 associated with each one of these traits. These associations should be further investigated by interval mapping analyses to find QTL positions and to allow the estimation of their effects. © Asian Network for Scientific Information, 2009.
Resumo:
The aim of this work is to evaluate the influence of point measurements in images, with subpixel accuracy, and its contribution in the calibration of digital cameras. Also, the effect of subpixel measurements in 3D coordinates of check points in the object space will be evaluated. With this purpose, an algorithm that allows subpixel accuracy was implemented for semi-automatic determination of points of interest, based on Fõrstner operator. Experiments were accomplished with a block of images acquired with the multispectral camera DuncanTech MS3100-CIR. The influence of subpixel measurements in the adjustment by Least Square Method (LSM) was evaluated by the comparison of estimated standard deviation of parameters in both situations, with manual measurement (pixel accuracy) and with subpixel estimation. Additionally, the influence of subpixel measurements in the 3D reconstruction was also analyzed. Based on the obtained results, i.e., on the quantification of the standard deviation reduction in the Inner Orientation Parameters (IOP) and also in the relative error of the 3D reconstruction, it was shown that measurements with subpixel accuracy are relevant for some tasks in Photogrammetry, mainly for those in which the metric quality is of great relevance, as Camera Calibration.
Resumo:
The objective of this paper is to show a methodology to estimate transmission line parameters. The method is applied in a single-phase transmission line using the method of least squares. In this method the longitudinal and transversal parameters of the line are obtained as a function of a set of measurements of currents and voltages (as well as their derivatives with respect to time) at the terminals of the line during the occurrence of a short-circuit phase-ground near the load. The method is based on the assumption that a transmission line can be represented by a single circuit π. The results show that the precision of the method depends on the length of the line, where it has a better performance for short lines and medium length. © 2012 IEEE.
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Esta dissertação apresenta uma técnica para detecção e diagnósticos de faltas incipientes. Tais faltas provocam mudanças no comportamento do sistema sob investigação, o que se reflete em alterações nos valores dos parâmetros do seu modelo matemático representativo. Como plataforma de testes, foi elaborado um modelo de um sistema industrial em ambiente computacional Matlab/Simulink, o qual consiste em uma planta dinâmica composta de dois tanques comunicantes entre si. A modelagem dessa planta foi realizada através das equações físicas que descrevem a dinâmica do sistema. A falta, a que o sistema foi submetido, representa um estrangulamento gradual na tubulação de saída de um dos tanques. Esse estrangulamento provoca uma redução lenta, de até 20 %, na seção desse tubo. A técnica de detecção de falta foi realizada através da estimação em tempo real dos parâmetros de modelos Auto-regressivos com Entradas Exógenas (ARX) com estimadores Fuzzy e de Mínimos Quadrados Recursivos. Já, o diagnóstico do percentual de entupimento da tubulação foi obtido por um sistema fuzzy de rastreamento de parâmetro, realimentado pela integral do resíduo de detecção. Ao utilizar essa metodologia, foi possível detectar e diagnosticar a falta simulada em três pontos de operação diferentes do sistema. Em ambas as técnicas testadas, o método de MQR teve um bom desempenho, apenas para detectar a falta. Já, o método que utilizou estimação com supervisão fuzzy obteve melhor desempenho, em detectar e diagnosticar as faltas aplicadas ao sistema, constatando a proposta do trabalho.
Resumo:
Desde a incorporação da automação no processo produtivo, a busca por sistemas mais eficientes, objetivando o aumento da produtividade e da qualidade dos produtos e serviços, direcionou os estudos para o planejamento de estratégias que permitissem o monitoramento de sistemas com o intuito principal de torna-los mais autônomos e robustos. Por esse motivo, as pesquisas envolvendo o diagnóstico de faltas em sistemas industriais tornaram-se mais intensivas, visto a necessidade da incorporação de técnicas para monitoramente detalhado de sistemas. Tais técnicas permitem a verificação de perturbações, falta ou mesmo falhas. Em vista disso, essa trabalho investiga técnicas de detecção e diagnostico de faltas e sua aplicação em motores de indução trifásicos, delimitando o seu estudo em duas situações: sistemas livre de faltas, e sobre atuação da falta incipiente do tipo curto-circuitoparcial nas espiras do enrolamento do estator. Para a detecção de faltas, utilizou-se analise paramétrica dos parâmetros de um modelo de tempo discreto, de primeira ordem, na estrutura autoregressivo com entradas exógenas (ARX). Os parâmetros do modelo ARX, que trazem informação sobre a dinâmica dominante do sistema, são obtidos recursivamente pela técnica dos mínimos quadrados recursivos (MQR). Para avaliação da falta, foi desenvolvido um sistema de inferência fuzzy (SIF) intervala do tipo-2, cuja mancha de incerteza ou footprint of uncertainty (FOU), características de sistema fuzzy tipo-2, é ideal como forma de representar ruídos inerentes a sistemas reais e erros numéricos provenientes do processo de estimação paramétrica. Os parâmetros do modelo ARX são entradas para o SIF. Algoritmos genéricos (AG’s) foram utilizados para otimização dos SIF intervalares tipo-2, objetivando reduzir o erro de diagnóstico da falta identificada na saída desses sistemas. Os resultados obtidos em teste de simulação computacional demonstram a efetividade da metodologia proposta.
Resumo:
Neste trabalho serão apresentados os resultados da avaliação experimental de uma metodologia de controle digital preditivo auto-ajustavel aplicada ao controle de tensão de um sistema de geração de energia de escala reduzida. Um estimador recursivo baseado no conhecido método de mínimos quadrados é utilizado na etapa de identificação do controlador preditivo proposto. A etapa de cálculo da lei de controle é realizada com o algoritmo Generalized Predictive Controller (GPC). A avaliação experimental foi realizada com testes de resposta ao degrau e rastreamento aplicados em diferentes condições operacionais do sistema de potência estudado. Para fins de comparação, também serão apresentados os resultados da avaliação de um controlador auto-ajustável que utiliza o método de alocação de pólos para a síntese do sinal de controle e três controladores digitais com parâmetros fixos.
Resumo:
Dois dos principais objetivos da interpretação petrofísica de perfis são a determinação dos limites entre as camadas geológicas e o contato entre fluidos. Para isto, o perfil de indução possui algumas importantes propriedades: É sensível ao tipo de fluido e a distribuição do mesmo no espaço poroso; e o seu registro pode ser modelado com precisão satisfatória como sendo uma convolução entre a condutividade da formação e a função resposta da ferramenta. A primeira propriedade assegura uma boa caracterização dos reservatórios e, ao mesmo tempo, evidencia os contatos entre fluidos, o que permite um zoneamento básico do perfil de poço. A segunda propriedade decorre da relação quasi-linear entre o perfil de indução e a condutividade da formação, o que torna possível o uso da teoria dos sistemas lineares e, particularmente, o desenho de filtros digitais adaptados à deconvolução do sinal original. A idéia neste trabalho é produzir um algoritmo capaz de identificar os contatos entre as camadas atravessadas pelo poço, a partir da condutividade aparente lida pelo perfil de indução. Para simplificar o problema, o modelo de formação assume uma distribuição plano-paralela de camadas homogêneas. Este modelo corresponde a um perfil retangular para condutividade da formação. Usando o perfil de entrada digitalizado, os pontos de inflexão são obtidos numericamente a partir dos extremos da primeira derivada. Isto gera uma primeira aproximação do perfil real da formação. Este perfil estimado é então convolvido com a função resposta da ferramenta gerando um perfil de condutividade aparente. Uma função custo de mínimos quadrados condicionada é definida em termos da diferença entre a condutividade aparente medida e a estimada. A minimização da função custo fornece a condutividade das camadas. O problema de otimização para encontrar o melhor perfil retangular para os dados de indução é linear nas amplitudes (condutividades das camadas), mas uma estimativa não linear para os contatos entre as camadas. Neste caso as amplitudes são estimadas de forma linear pelos mínimos quadrados mantendo-se fixos os contatos. Em um segundo passo mantem-se fixas as amplitudes e são calculadas pequenas mudanças nos limites entre as camadas usando uma aproximação linearizada. Este processo é interativo obtendo sucessivos refinamentos até que um critério de convergência seja satisfeito. O algoritmo é aplicado em dados sintéticos e reais demonstrando a robustez do método.