899 resultados para Fractional Calculus Operators
Resumo:
MSC 2010: 30C45, 30A20, 34A30
Resumo:
MSC 2010: 30C45, 30A20, 34C40
Resumo:
MSC 2010: 30C45, 30C55
Resumo:
MSC 2010: 30C55, 30C45
Resumo:
MSC 2010: 30C45
Resumo:
MSC 2010: 45DB05, 45E05, 78A45
Resumo:
Neste trabalho, generalizamos o Princípio da Mínima Ação proposto por Riewe para sistemas não conservativos, contendo forças dissipativas lineares dependentes de derivadas temporais de qualquer ordem. A Ação generalizada é construída a partir de funções Lagrangianas dependentes de derivadas de ordem inteira e fracionária. Diferente de outras formulações, o uso de derivadas fracionárias permite a construção de Lagrangianas físicas para sistemas não conservativos. Uma Lagrangiana é dita física se fornece relações fisicamente consistentes para o momentum e o Hamiltoniano do sistema. Neste Princípio da Mínima Ação generalizado, as equações de movimento são obtidas a partir da equação de Euler-Lagrange e, tomando-se o limite indo à zero para o intervalo de tempo definindo a Ação. Finalmente, como exemplo de aplicação, formulamos pela primeira vez uma Lagrangiana física para o problema da carga pontual acelerada.
Resumo:
MSC 2010: 49K05, 26A33
Resumo:
This paper is devoted to the investigation of nonnegative solutions and the stability and asymptotic properties of the solutions of fractional differential dynamic linear time-varying systems involving delayed dynamics with delays. The dynamic systems are described based on q-calculus and Caputo fractional derivatives on any order.
Resumo:
Cover title.
Resumo:
In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.
Resumo:
In this paper, by using the method of separation of variables, we obtain eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator defined via fractional Caputo derivatives. The solutions are expressed using the Mittag-Leffler function and we show some graphical representations for some parameters. A family of fundamental solutions of the corresponding fractional Dirac operator is also obtained. Particular cases are considered in both cases.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.