894 resultados para Feedforward control law


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the literature, the impact angle control problem has been addressed mostly against lower speed or stationary targets. However, in the current defense scenario, targets of much higher speeds than interceptors are a reality. Moreover, approaching a higher speed target from a specified angle is important for effective seeker acquisition and enhanced warhead effectiveness. This paper proposes a composite proportional navigation guidance law using a combination of the standard proportional navigation and the recently proposed retroproportional navigation guidance laws for intercepting higher speed nonmaneuvering targets at specified impact angles in three-dimensional engagements. An analysis of the set of achievable impact angles by the composite proportional navigation guidance law is presented. It is shown that there exists an impulse bias that, when added to the composite proportional navigation guidance command, expands this set further by reversing the direction of the line-of-sight angular rotation vector. A bound on the magnitude of the bias is also derived. Finally, an implementation of this impulse bias, in the form of a series of pulses, is proposed and analyzed. Simulation results are also presented to support the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the literature, the impact angle control problem has been addressed mostly against lower speed or stationary targets. However, in the current defense scenario, targets of much higher speeds than interceptors are a reality. Moreover, approaching a higher speed target from a specified angle is important for effective seeker acquisition and enhanced warhead effectiveness. This paper proposes a composite proportional navigation guidance law using a combination of the standard proportional navigation and the recently proposed retroproportional navigation guidance laws for intercepting higher speed nonmaneuvering targets at specified impact angles in three-dimensional engagements. An analysis of the set of achievable impact angles by the composite proportional navigation guidance law is presented. It is shown that there exists an impulse bias that, when added to the composite proportional navigation guidance command, expands this set further by reversing the direction of the line-of-sight angular rotation vector. A bound on the magnitude of the bias is also derived. Finally, an implementation of this impulse bias, in the form of a series of pulses, is proposed and analyzed. Simulation results are also presented to support the analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To overcome the difficulty in the DNS of compressible turbulence at high turbulent Mach number, a new difference scheme called GVC8 is developed. We have succeeded in the direct numerical simulation of decaying compressible turbulence up to turbulent Mach number 0.95. The statistical quantities thus obtained at lower turbulent Mach number agree well with those from previous authors with the same initial conditions, but they are limited to simulate at lower turbulent Mach numbers due to the so-called start-up problem. The energy spectrum and coherent structure of compressible turbulent flow are analysed. The scaling law of compressible turbulence is studied. The computed results indicate that the extended self-similarity holds in decaying compressible turbulence despite the occurrence of shocklets, and compressibility has little effects on relative scaling exponents when turbulent Mach number is not very high.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of the numerical solution of time-dependant Schrodinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by k(3) times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the complexity of biological networks, we find that certain common architectures govern network structures. These architectures impose fundamental constraints on system performance and create tradeoffs that the system must balance in the face of uncertainty in the environment. This means that while a system may be optimized for a specific function through evolution, the optimal achievable state must follow these constraints. One such constraining architecture is autocatalysis, as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence of a tradeoff between error minimization and stability. We also show that additional complexity in the network results in increased robustness. Ribosome synthesis is also autocatalytic where ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, slows down response, and also constrains the system’s performance. On a larger scale, transcriptional regulation of whole organisms also follows architectural constraints and this can be seen in the differences between bacterial and yeast transcription networks. We show that the degree distributions of bacterial transcription network follow a power law distribution while the yeast network follows an exponential distribution. We then explored the evolutionary models that have previously been proposed and show that neither the preferential linking model nor the duplication-divergence model of network evolution generates the power-law, hierarchical structure found in bacteria. However, in real biological systems, the generation of new nodes occurs through both duplication and horizontal gene transfers, and we show that a biologically reasonable combination of the two mechanisms generates the desired network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundamental changes in the management of water resources in Portugal are now evolving. Five regional organisations termed Administracaos de Regiao Hidrographic (ARH), will be created to manage water resources within their respective geographical areas. These areas will be catchment based. As a fore-runner to the implementation of the five ARH's a foundation project has been established within the Direcao-Geral do Recursos Naturais to examine the practical implications of the new system. This project has been divided into a number of sub-projects and complementary projects to include the Tejo complementary project. The Tejo complementary project is the focus of this report. The report is to advise on the role of biology in the proposed ARH, to establish priorities for biological studies within the present Projecto de Gestao Integrada dos Recursos Hidricos da Bacia Hidrografica do Rio Tejo (PGIRH/T) and to assist with the planning of laboratory facilities for biology at the new PGIRH/T laboratory at Alges, Lisboa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We are at the cusp of a historic transformation of both communication system and electricity system. This creates challenges as well as opportunities for the study of networked systems. Problems of these systems typically involve a huge number of end points that require intelligent coordination in a distributed manner. In this thesis, we develop models, theories, and scalable distributed optimization and control algorithms to overcome these challenges.

This thesis focuses on two specific areas: multi-path TCP (Transmission Control Protocol) and electricity distribution system operation and control. Multi-path TCP (MP-TCP) is a TCP extension that allows a single data stream to be split across multiple paths. MP-TCP has the potential to greatly improve reliability as well as efficiency of communication devices. We propose a fluid model for a large class of MP-TCP algorithms and identify design criteria that guarantee the existence, uniqueness, and stability of system equilibrium. We clarify how algorithm parameters impact TCP-friendliness, responsiveness, and window oscillation and demonstrate an inevitable tradeoff among these properties. We discuss the implications of these properties on the behavior of existing algorithms and motivate a new algorithm Balia (balanced linked adaptation) which generalizes existing algorithms and strikes a good balance among TCP-friendliness, responsiveness, and window oscillation. We have implemented Balia in the Linux kernel. We use our prototype to compare the new proposed algorithm Balia with existing MP-TCP algorithms.

Our second focus is on designing computationally efficient algorithms for electricity distribution system operation and control. First, we develop efficient algorithms for feeder reconfiguration in distribution networks. The feeder reconfiguration problem chooses the on/off status of the switches in a distribution network in order to minimize a certain cost such as power loss. It is a mixed integer nonlinear program and hence hard to solve. We propose a heuristic algorithm that is based on the recently developed convex relaxation of the optimal power flow problem. The algorithm is efficient and can successfully computes an optimal configuration on all networks that we have tested. Moreover we prove that the algorithm solves the feeder reconfiguration problem optimally under certain conditions. We also propose a more efficient algorithm and it incurs a loss in optimality of less than 3% on the test networks.

Second, we develop efficient distributed algorithms that solve the optimal power flow (OPF) problem on distribution networks. The OPF problem determines a network operating point that minimizes a certain objective such as generation cost or power loss. Traditionally OPF is solved in a centralized manner. With increasing penetration of volatile renewable energy resources in distribution systems, we need faster and distributed solutions for real-time feedback control. This is difficult because power flow equations are nonlinear and kirchhoff's law is global. We propose solutions for both balanced and unbalanced radial distribution networks. They exploit recent results that suggest solving for a globally optimal solution of OPF over a radial network through a second-order cone program (SOCP) or semi-definite program (SDP) relaxation. Our distributed algorithms are based on the alternating direction method of multiplier (ADMM), but unlike standard ADMM-based distributed OPF algorithms that require solving optimization subproblems using iterative methods, the proposed solutions exploit the problem structure that greatly reduce the computation time. Specifically, for balanced networks, our decomposition allows us to derive closed form solutions for these subproblems and it speeds up the convergence by 1000x times in simulations. For unbalanced networks, the subproblems reduce to either closed form solutions or eigenvalue problems whose size remains constant as the network scales up and computation time is reduced by 100x compared with iterative methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the convergence of a remote iterative learning control system subject to data dropouts. The system is composed by a set of discrete-time multiple input-multiple output linear models, each one with its corresponding actuator device and its sensor. Each actuator applies the input signals vector to its corresponding model at the sampling instants and the sensor measures the output signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1 or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European Control Conferences (ECC) are held every two years, under the auspices of the European Union Control Association (EUCA). The conference is held at the Faculty of Law on the campus of Cambridge University with the exception of the opening planery talks, which is held at the Corn Exchange in the City Center. The scientific program for the ECC03 included 606 regular papers, three plenary talks, six semiplenary talks, three minicourses, and two roundtable sessions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Active vibration control of a submerged hull is presented. A submarine hull can be idealised as a ring stiffened finite cylinder with applied fluid loading. At low frequencies, rotation of the propeller results in discrete tones at the blade passing frequency and its harmonics. The low frequency axial and radial vibration modes of the submerged body can result in a high level of radiated noise. Global hull modes are difficult to attenuate since passive control techniques such as damping materials are not practical due to size and weight constraints. This work investigates active vibration control of a submarine hull for attenuation of the structural and acoustic responses. Based on a feedforward algorithm at tonal frequencies, active vibration suppression of the axial and radial hull displacements are investigated. The effect of the various control arrangements on the structure-borne radiated noise is examined. Numerical simulations of the control performance are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Operation of induction machines in the high-speed and/or high-torque range requires field-weakening to comply with voltage and current physical limitations. This paper presents an anti-windup approach to this problem: rather than developing an ad-hoc field weakening strategy in the high-speed region, we equip an unconstrained vector-control design with an anti-windup module that automatically adjusts the current and flux set-points so that voltage and current constraints are satisfied at every operating point. The anti-windup module includes a feedforward modification of the set point aimed at maximizing the available torque in steady-state and a feedback modification of the controller based on an internal model-based antiwindup scheme. This paper includes a complete stability analysis of the proposed solution and presents encouraging experimental results on an industrial drive. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.