940 resultados para Failure Rate Function
Resumo:
OBJECTIVES: Tenofovir is associated with reduced renal function. It is not clear whether patients can be expected to fully recover their renal function if tenofovir is discontinued. METHODS: We calculated the estimated glomerular filtration rate (eGFR) for patients in the Swiss HIV Cohort Study remaining on tenofovir for at least 1 year after starting a first antiretroviral therapy regimen with tenofovir and either efavirenz or the ritonavir-boosted protease inhibitor lopinavir, atazanavir or darunavir. We estimated the difference in eGFR slope between those who discontinued tenofovir after 1 year and those who remained on tenofovir. RESULTS: A total of 1049 patients on tenofovir for at least 1 year were then followed for a median of 26 months, during which time 259 patients (25%) discontinued tenofovir. After 1 year on tenofovir, the difference in eGFR between those starting with efavirenz and those starting with lopinavir, atazanavir and darunavir was - 0.7 [95% confidence interval (CI) -2.3 to 0.8], -1.4 (95% CI -3.2 to 0.3) and 0.0 (95% CI -1.7 to 1.7) mL/min/1.73 m(2) , respectively. The estimated linear rate of decline in eGFR on tenofovir was -1.1 (95% CI -1.5 to -0.8) mL/min/1.73 m(2) per year and its recovery after discontinuing tenofovir was 2.1 (95% CI 1.3 to 2.9) mL/min/1.73 m(2) per year. Patients starting tenofovir with either lopinavir or atazanavir appeared to have the same rates of decline and recovery as those starting tenofovir with efavirenz. CONCLUSIONS: If patients discontinue tenofovir, clinicians can expect renal function to recover more rapidly than it declined.
Resumo:
Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD.
Resumo:
PURPOSE: To evaluate the rate of tumor recurrence within the irradiated volume after initial low-dose irradiation of limited-stage small-cell lung cancer (SCLC), to assess the tolerance of a sequential combination of low-dose chest irradiation followed by chemotherapy, and to confirm the responsiveness of limited-stage SCLC to low-dose irradiation. METHODS AND MATERIALS: In this pilot study, 26 patients with limited-stage SCLC were treated by first-line 20-Gy thoracic irradiation followed 3 weeks later by chemotherapy (cisplatin, doxorubicin, and etoposide for six cycles). RESULTS: We present our final results with a median follow-up of surviving patients of 7 years. The response rate to this low-dose irradiation was 83%, with an overall response rate to radiochemotherapy of 96% and a median survival of 21 months. No unexpected early or late toxicity was observed. The rate of initial isolated local failure was 8%, which compares favorably with other published series using higher doses of radiochemotherapy. CONCLUSION: An initial chest irradiation of 20 Gy before chemotherapy could be sufficient to reduce the risk of local failure during the time of survival of patients with limited-stage SCLC. Potential advantages of this treatment may be the prevention of resistance mechanisms to radiotherapy induced by preliminary chemotherapy and a reduced radiation-induced toxicity.
Resumo:
Background: Mammalian target of rapamycin (mTOR), a central regulator of cell growth, is found in two structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC)1 and mTORC2. The specific roles of each of these branches of mTOR signaling have not been dissected in the adult heart. In the present study, we aimed to bring new insights into the function of cardiac mTORC1-mediated signaling in physiological as well as pathological situations.Methods: We generated mice homozygous for loxP-flanked raptor and positive for the tamoxifen-inducible Cre recombinase (MerCreMer) under control of the α- myosin heavy chain promoter. The raptor gene encodes an essential component of mTORC1. Gene ablation was induced at the age of 10-12 weeks, and two weeks later the raptor cardiac-knockout (raptor-cKO) mice started voluntary cagewheel exercise or were subjected to transverse aortic constriction (TAC) to induce pressure overload.Results: In sedentary raptor-cKO mice, ejection fractions gradually decreased, resulting in significantly reduced values at 38 days (P < 0.001). Raptor-cKO mice started to die during the fifth week after the last tamoxifen injection. At that time, the mortality rate was 36% in sedentary (n = 11) and 64% in exercising (n = 14) mice. TAC-induced pressure overload resulted in severe cardiac dysfunction already at earlier timepoints. Thus, at 7-9 days after surgery, ejection fraction and fractional shortening values were 22.3% vs 43.5% and 10.2% vs 21.5% in raptor-cKO vs wild-type mice, respectively. This was accompanied by significant reductions of ventricular wall and septal thickness as well as an increase in left ventricular internal diameter. Moreover, ventricular weight to tibial length ratios were increased in wild-type, but not in the raptor-cKO TAC mice. Together, this shows that raptor-cKO mice rapidly developed dilated cardiomyopathy without going through a phase of adaptive hypertrophy. Expression of ANP and β-MHC was induced in all raptor-cKO mice irrespective of the cardiac load conditions. Consistent with reduced mTORC1 activity, phosphorylation of ribosomal S6 kinase and 4E-BP1 was blunted, indicating reduced protein synthesis. Moreover, expression of multiple genes involved in the regulation of energy metabolism was altered, and followed by a shift from fatty acid to glucose oxidation.Conclusion: Our study suggests that mTORC1 coordinates protein and energy metabolic pathways in the heart. Moreover, we demonstrate that raptor is essential for the cardiac adaptation to increased workload and importantly, also for normal physiological cardiac function.
Resumo:
BACKGROUND: The impact of abnormal spirometric findings on risk for incident heart failure among older adults without clinically apparent lung disease is not well elucidated.METHODS: We evaluated the association of baseline lung function with incident heart failure, defined as first hospitalization for heart failure, in 2125 participants of the community-based Health, Aging, and Body Composition (Health ABC) Study (age, 73.6 +/- 2.9 years; 50.5% men; 62.3% white; 37.7% black) without prevalent lung disease or heart failure. Abnormal lung function was defined either as forced vital capacity (FVC) or forced expiratory volume in 1(st) second (FEV1) to FVC ratio below lower limit of normal. Percent predicted FVC and FEV1 also were assessed as continuous variables.RESULTS: During follow-up (median, 9.4 years), heart failure developed in 68 of 350 (19.4%) participants with abnormal baseline lung function, as compared with 172 of 1775 (9.7%) participants with normal lung function (hazard ratio [HR] 2.31; 95% confidence interval [CI], 1.74-3.07; P <.001). This increased risk persisted after adjusting for previously identified heart failure risk factors in the Health ABC Study, body mass index, incident coronary heart disease, and inflammatory markers (HR 1.83; 95% CI, 1.33-2.50; P <.001). Percent predicted (%) FVC and FEV 1 had a linear association with heart failure risk (HR 1.21; 95% CI, 1.11-1.32 and 1.18; 95% CI, 1.10-1.26, per 10% lower % FVC and % FEV1, respectively; both P <.001 in fully adjusted models). Findings were consistent in sex and race subgroups and for heart failure with preserved or reduced ejection fraction.CONCLUSIONS: Abnormal spirometric findings in older adults without clinical lung disease are associated with increased heart failure risk. (C) 2011 Elsevier Inc. All rights reserved. The American Journal of Medicine (2011) 124, 334-341
Resumo:
The alteration in neuromuscular function of knee extensor muscles was characterised after a squash match in 10 trained players. Maximal voluntary contraction (MVC) and surface EMG activity of vastus lateralis (VL) and vastus medialis (VM) muscles were measured before and immediately after a 1-h squash match. M-wave and twitch contractile properties were analysed following single stimuli. MVC declined (280.5+/-46.8 vs. 233.6+/-35.4 Nm, -16%; P<0.001) after the exercise and this was accompanied by an impairment of central activation, as attested by decline in voluntary activation (76.7+/-10.4 vs. 71.3+/-9.6%, -7%; P<0.05) and raw EMG activity of the two vastii (-17%; P<0.05), whereas RMS/M decrease was lesser (VL: -5%; NS and VM: -12%; P=0.10). In the fatigued state, no significant changes in M-wave amplitude (VL: -9%; VM: -5%) or duration were observed. Following exercise, the single twitch was characterised by lower peak torque (-20%; P<0.001) as well as shorter half-relaxation time (-13%; P<0.001) and reduced maximal rate of twitch tension development (-23%; P<0.001) and relaxation (-17%; P<0.05). A 1-h squash match play caused peripheral fatigue by impairing excitation-contraction coupling, whereas sarcolemmal excitability seems well preserved. Our results also emphasise the role of central activation failure as a possible mechanism contributing to the torque loss observed in knee extensors. Physical conditioners should consider these effects when defining their training programs for squash players.
Resumo:
Estimer la filtration glomérulaire chez les personnes âgées, tout en tenant compte de la difficulté supplémentaire d'évaluer leur masse musculaire, est difficile et particulièrement important pour la prescription de médicaments. Le taux plasmatique de la creatinine dépend à la fois de la fraction d'élimination rénale et extra-rénale et de la masse musculaire. Actuellement, pour estimer là filtration glomérulaire différentes formules sont utilisées, qui se fondent principalement sur la valeur de la créatinine. Néanmoins, en raison de la fraction éliminée par les voies tubulaires et intestinales la clairance de la créatinine surestime généralement le taux de filtration glomérulaire (GFR). Le but de cette étude est de vérifier la fiabilité de certains marqueurs et algorithmes de la fonction rénale actuellement utilisés et d'évaluer l'avantage additionnel de prendre en considération la masse musculaire mesurée par la bio-impédance dans une population âgée (> 70 ans) et avec une fonction rénale chronique compromise basée sur MDRD eGFR (CKD stades lll-IV). Dans cette étude, nous comparons 5 équations développées pour estimer la fonction rénale et basées respectivement sur la créatinine sérique (Cockcroft et MDRD), la cystatine C (Larsson), la créatinine combinée à la bêta-trace protéine (White), et la créatinine ajustée à la masse musculaire obtenue par analyse de la bio-impédance (MacDonald). La bio-impédance est une méthode couramment utilisée pour estimer la composition corporelle basée sur l'étude des propriétés électriques passives et de la géométrie des tissus biologiques. Cela permet d'estimer les volumes relatifs des différents tissus ou des fluides dans le corps, comme par exemple l'eau corporelle totale, la masse musculaire (=masse maigre) et la masse grasse corporelle. Nous avons évalué, dans une population âgée d'un service interne, et en utilisant la clairance de l'inuline (single shot) comme le « gold standard », les algorithmes de Cockcroft (GFR CKC), MDRD, Larsson (cystatine C, GFR CYS), White (beta trace protein, GFR BTP) et Macdonald (GFR = ALM, la masse musculaire par bio-impédance. Les résultats ont montré que le GFR (mean ± SD) mesurée avec l'inuline et calculée avec les algorithmes étaient respectivement de : 34.9±20 ml/min pour l'inuline, 46.7±18.5 ml/min pour CKC, 47.2±23 ml/min pour CYS, 54.4±18.2ml/min pour BTP, 49±15.9 ml/min pour MDRD et 32.9±27.2ml/min pour ALM. Les courbes ROC comparant la sensibilité et la spécificité, l'aire sous la courbe (AUC) et l'intervalle de confiance 95% étaient respectivement de : CKC 0 68 (055-0 81) MDRD 0.76 (0.64-0.87), Cystatin C 0.82 (0.72-0.92), BTP 0.75 (0.63-0.87), ALM 0.65 (0.52-0.78). ' En conclusion, les algorithmes comparés dans cette étude surestiment la GFR dans la population agee et hospitalisée, avec des polymorbidités et une classe CKD lll-IV. L'utilisation de l'impédance bioelectrique pour réduire l'erreur de l'estimation du GFR basé sur la créatinine n'a fourni aucune contribution significative, au contraire, elle a montré de moins bons résultats en comparaison aux autres equations. En fait dans cette étude 75% des patients ont changé leur classification CKD avec MacDonald (créatinine et masse musculaire), contre 49% avec CYS (cystatine C), 56% avec MDRD,52% avec Cockcroft et 65% avec BTP. Les meilleurs résultats ont été obtenus avec Larsson (CYS C) et la formule de Cockcroft.
Resumo:
Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways.
Resumo:
Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs) and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r) was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001), poor (r = 0.380; p = 0.004), and poor (r = 0.277; p = 0.116). The interobserver agreement was considered excellent (0.754) for measurements of cortical thickness and bipolar length (0.833), and satisfactory for parenchymal thickness (0.523). Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.
Resumo:
The measurement of cardiovascular features of wild animals is important, as is the measurement in pets, for the assessment of myocardial function and the early detection of cardiac abnormalities, which could progress to heart failure. Speckle tracking echocardiography (2D STE) is a new tool that has been used in veterinary medicine, which demonstrates several advantages, such as angle independence and the possibility to provide the early diagnosis of myocardial alterations. The aim of this study was to evaluate the left myocardial function in a maned wolf by 2D STE. Thus, the longitudinal, circumferential and radial strain and strain rate were obtained, as well as, the radial and longitudinal velocity and displacement values, from the right parasternal long axis four-chamber view, the left parasternal apical four chamber view and the parasternal short axis at the level of the papillary muscles. The results of the longitudinal variables were -13.52±7.88, -1.60±1.05, 4.34±2.52 and 3.86±3.04 for strain (%), strain rate (1/s), displacement (mm) and velocity (cm/s), respectively. In addition, the radial and circumferential Strain and Strain rate were 24.39±14.23, 1.86±0.95 and -13.69±6.53, -1.01±0.48, respectively. Thus, the present study provides the first data regarding the use of this tool in maned wolves, allowing a more complete quantification of myocardial function in this species.
Resumo:
We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 ± 0.4 vs 8 ± 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 ± 7.37 vs 109.02 ± 27.87 mL min-1 kg-1, P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.
Resumo:
Patients with heart failure who have undergone partial left ventriculotomy improve resting left ventricular systolic function, but have limited functional capacity. We studied systolic and diastolic left ventricular function at rest and during submaximal exercise in patients with previous partial left ventriculotomy and in patients with heart failure who had not been operated, matched for maximal and submaximal exercise capacity. Nine patients with heart failure previously submitted to partial left ventriculotomy were compared with 9 patients with heart failure who had not been operated. All patients performed a cardiopulmonary exercise test with measurement of peak oxygen uptake and anaerobic threshold. Radionuclide left ventriculography was performed to analyze ejection fraction and peak filling rate at rest and during exercise at the intensity corresponding to the anaerobic threshold. Groups presented similar exercise capacity evaluated by peak oxygen uptake and at anaerobic threshold. Maximal heart rate was lower in the partial ventriculotomy group compared to the heart failure group (119 ± 20 vs 149 ± 21 bpm; P < 0.05). Ejection fraction at rest was higher in the partial ventriculotomy group as compared to the heart failure group (41 ± 12 vs 32 ± 9%; P < 0.0125); however, ejection fraction increased from rest to anaerobic threshold only in the heart failure group (partial ventriculotomy = 44 ± 17%; P = non-significant vs rest; heart failure = 39 ± 11%; P < 0.0125 vs rest; P < 0.0125 vs change in the partial ventriculotomy group). Peak filling rate was similar at rest and increased similarly in both groups at the anaerobic threshold intensity (partial ventriculotomy = 2.28 ± 0.55 EDV/s; heart failure = 2.52 ± 1.07 EDV/s; P < 0.0125; P > 0.05 vs change in partial ventriculotomy group). The abnormal responses demonstrated here may contribute to the limited exercise capacity of patients with partial left ventriculotomy despite the improvement in resting left ventricular systolic function.
Resumo:
The present investigation was undertaken to study the effect of β-blockers and exercise training on cardiac structure and function, respectively, as well as overall functional capacity in a genetic model of sympathetic hyperactivity-induced heart failure in mice (α2A/α2CArKO). α2A/α2CArKO and their wild-type controls were studied for 2 months, from 3 to 5 months of age. Mice were randomly assigned to control (N = 45), carvedilol-treated (N = 29) or exercise-trained (N = 33) groups. Eight weeks of carvedilol treatment (38 mg/kg per day by gavage) or exercise training (swimming sessions of 60 min, 5 days/week) were performed. Exercise capacity was estimated using a graded treadmill protocol and HR was measured by tail cuff. Fractional shortening was evaluated by echocardiography. Cardiac structure and gastrocnemius capillary density were evaluated by light microscopy. At 3 months of age, no significant difference in fractional shortening or exercise capacity was observed between wild-type and α2A/α2CArKO mice. At 5 months of age, all α2A/α2CArKO mice displayed exercise intolerance and baseline tachycardia associated with reduced fractional shortening and gastrocnemius capillary rarefaction. In addition, α2A/ α2CArKO mice presented cardiac myocyte hypertrophy and ventricular fibrosis. Exercise training and carvedilol similarly improved fractional shortening in α2A/α2CArKO mice. The effect of exercise training was mainly associated with improved exercise tolerance and increased gastrocnemius capillary density while β-blocker therapy reduced cardiac myocyte dimension and ventricular collagen to wild-type control levels. Taken together, these data provide direct evidence for the respective beneficial effects of exercise training and carvedilol in α2A/α2CArKO mice preventing cardiac dysfunction. The different mechanisms associated with beneficial effects of exercise training and carvedilol suggest future studies associating both therapies.
Resumo:
Chronic kidney disease (CKD) is a world-wide public health problem, with adverse outcomes of kidney failure, cardiovascular disease, and premature death. This finding has led to the hypothesis that earlier recognition of kidney disease and successful intervention may improve outcome. The National Kidney Foundation, through its Kidney Disease Outcomes Quality Initiative (K/DOQI), and other National institutions recommend glomerular filtration rate (GFR) for the definition, classification, screening, and monitoring of CKD. Blood creatinine clearance, the most widely used clinical marker of kidney function, is now recognized as an unreliable measure of GFR because serum creatinine is affected by age, weight, muscle mass, race, various medications, and extra-glomerular elimination. Cystatin C concentration is a new and promising marker for kidney dysfunction in both native and transplanted kidneys. Because of its low molecular weight, cystatin C is freely filtered at the glomerulus and is almost completely reabsorbed and catabolized, but not secreted, by tubular cells. Given these characteristics, cystatin C concentration may be superior to creatinine concentration in detecting chronic kidney disease. This review aims to evaluate from recent literature the clinical efficiency and relevance of these GFR markers in terms of screening CKD.
Resumo:
The objective of this study was to evaluate the effect of metabolic syndrome (MetS) and its individual components on the renal function of patients with type 2 diabetes mellitus (DM). A cross-sectional study was performed in 842 type 2 DM patients. A clinical and laboratory evaluation, including estimated glomerular filtration rate (eGFR) calculated by the modification of diet in renal disease formula, was performed. MetS was defined according to National Cholesterol Education Program - Adult Treatment Panel III criteria. Mean patient age was 57.9 ± 10.1 years and 313 (37.2%) patients were males. MetS was detected in 662 (78.6%) patients. A progressive reduction in eGFR was observed as the number of individual MetS components increased (one: 98.2 ± 30.8; two: 92.9 ± 28.1; three: 84.0 ± 25.1; four: 83.8 ± 28.5, and five: 79.0 ± 23.0; P < 0.001). MetS increased the risk for low eGFR (<60 mL·min-1·1.73 (m²)-1) 2.82-fold (95%CI = 1.55-5.12, P < 0.001). Hypertension (OR = 2.2, 95%CI = 1.39-3.49, P = 0.001) and hypertriglyceridemia (OR = 1.62, 95%CI = 1.19-2.20, P = 0.002) were the individual components with the strongest associations with low eGFR. In conclusion, there is an association between MetS and the reduction of eGFR in patients with type 2 DM, with hypertension and hypertriglyceridemia being the most important contributors in this sample. Interventional studies should be conducted to determine if treatment of MetS can prevent renal failure in type 2 DM patients.