950 resultados para Extremal graphs
Resumo:
The open provenance architecture (OPA) approach to the challenge was distinct in several regards. In particular, it is based on an open, well-defined data model and architecture, allowing different components of the challenge workflow to independently record documentation, and for the workflow to be executed in any environment. Another noticeable feature is that we distinguish between the data recorded about what has occurred, emphprocess documentation, and the emphprovenance of a data item, which is all that caused the data item to be as it is and is obtained as the result of a query over process documentation. This distinction allows us to tailor the system to separately best address the requirements of recording and querying documentation. Other notable features include the explicit recording of causal relationships between both events and data items, an interaction-based world model, intensional definition of data items in queries rather than relying on explicit naming mechanisms, and emphstyling of documentation to support non-functional application requirements such as reducing storage costs or ensuring privacy of data. In this paper we describe how each of these features aid us in answering the challenge provenance queries.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
Block diagrams and signal-flow graphs are used to represent and to obtain the transfer function of interconnected systems. The reduction of signal-flow graphs is considered simpler than the reduction of block diagrams for systems with complex interrelationships. Signal-flow graphs reduction can be made without graphic manipulations of diagrams, and it is attractive for a computational implementation. In this paper the authors propose a computational method for direct reduction of signal-flow graphs. This method uses results presented in this paper about the calculation of literal determinants without symbolic mathematics tools. The Cramer's rule is applied for the solution of a set of linear equations, A program in MATLAB language for reduction of signal-flow graphs with the proposed method is presented.
Resumo:
In this paper, we extend the use of the variance dispersion graph (VDG) to experiments in which the response surface (RS) design must be blocked. Through several examples we evaluate the prediction performances of RS designs in non-orthogonal block designs compared with the equivalent unblocked designs and orthogonally blocked designs. These examples illustrate that good prediction performance of designs in small blocks can be expected in practice. Most importantly, we show that the allocation of the treatment set to blocks can seriously affect the prediction properties of designs; thus, much care is needed in performing this allocation.
Resumo:
The hybrid formalism is used to quantize the superstring compactified to two-dimensional target-space in a manifestly spacetime supersymmetric manner. A quantizable sigma model action is then constructed for the type II superstring in curved two-dimensional supergravity backgrounds which can include Ramond-Ramond flux. Such curved backgrounds include Calabi-Yau fourfold compactifications with Ramond-Ramond flux, and new extremal black hole solutions in two-dimensional dilaton supergravity theory. These black hole solutions are a natural generalization of the CGHS model and might be possible to describe using a supergroup version of the SL(2, R)/U(1) WZW model. We also study some dynamical aspects of the new black holes, such as formation and evaporation. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
Variance dispersion graphs have become a popular tool in aiding the choice of a response surface design. Often differences in response from some particular point, such as the expected position of the optimum or standard operating conditions, are more important than the response itself. We describe two examples from food technology. In the first, an experiment was conducted to find the levels of three factors which optimized the yield of valuable products enzymatically synthesized from sugars and to discover how the yield changed as the levels of the factors were changed from the optimum. In the second example, an experiment was conducted on a mixing process for pastry dough to discover how three factors affected a number of properties of the pastry, with a view to using these factors to control the process. We introduce the difference variance dispersion graph (DVDG) to help in the choice of a design in these circumstances. The DVDG for blocked designs is developed and the examples are used to show how the DVDG can be used in practice. In both examples a design was chosen by using the DVDG, as well as other properties, and the experiments were conducted and produced results that were useful to the experimenters. In both cases the conclusions were drawn partly by comparing responses at different points on the response surface.
Resumo:
For any positive integer n, the sine polynomials that are nonnegative in [0, π] and which have the maximal derivative at the origin are determined in an explicit form. Associated cosine polynomials Kn (θ) are constructed in such a way that {Kn(θ)} is a summability kernel. Thus, for each Pi 1 ≤ P ≤ ∞ and for any 27π-periodic function f ∈ Lp [-π, π], the sequence of convolutions Kn * f is proved to converge to f in Lp[-ππ]. The pointwise and almost everywhere convergences are also consequences of our construction.
Resumo:
Incluye Bibliografía
Resumo:
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
Resumo:
The class of hypergeometric polynomials F12(-m,b;b+b̄;1-z) with respect to the parameter b=λ+iη, where λ>0, are known to have all their zeros simple and exactly on the unit circle |z|=1. In this note we look at some of the associated extremal and orthogonal properties on the unit circle and on the interval (-1,1). We also give the associated Gaussian type quadrature formulas. © 2012 IMACS.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Discriminating Different Classes of Biological Networks by Analyzing the Graphs Spectra Distribution
Resumo:
The brain's structural and functional systems, protein-protein interaction, and gene networks are examples of biological systems that share some features of complex networks, such as highly connected nodes, modularity, and small-world topology. Recent studies indicate that some pathologies present topological network alterations relative to norms seen in the general population. Therefore, methods to discriminate the processes that generate the different classes of networks (e. g., normal and disease) might be crucial for the diagnosis, prognosis, and treatment of the disease. It is known that several topological properties of a network (graph) can be described by the distribution of the spectrum of its adjacency matrix. Moreover, large networks generated by the same random process have the same spectrum distribution, allowing us to use it as a "fingerprint". Based on this relationship, we introduce and propose the entropy of a graph spectrum to measure the "uncertainty" of a random graph and the Kullback-Leibler and Jensen-Shannon divergences between graph spectra to compare networks. We also introduce general methods for model selection and network model parameter estimation, as well as a statistical procedure to test the nullity of divergence between two classes of complex networks. Finally, we demonstrate the usefulness of the proposed methods by applying them to (1) protein-protein interaction networks of different species and (2) on networks derived from children diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) and typically developing children. We conclude that scale-free networks best describe all the protein-protein interactions. Also, we show that our proposed measures succeeded in the identification of topological changes in the network while other commonly used measures (number of edges, clustering coefficient, average path length) failed.
Resumo:
Let G be a graph on n vertices with maximum degree ?. We use the Lovasz local lemma to show the following two results about colourings ? of the edges of the complete graph Kn. If for each vertex v of Kn the colouring ? assigns each colour to at most (n - 2)/(22.4?2) edges emanating from v, then there is a copy of G in Kn which is properly edge-coloured by ?. This improves on a result of Alon, Jiang, Miller, and Pritikin [Random Struct. Algorithms 23(4), 409433, 2003]. On the other hand, if ? assigns each colour to at most n/(51?2) edges of Kn, then there is a copy of G in Kn such that each edge of G receives a different colour from ?. This proves a conjecture of Frieze and Krivelevich [Electron. J. Comb. 15(1), R59, 2008]. Our proofs rely on a framework developed by Lu and Szekely [Electron. J. Comb. 14(1), R63, 2007] for applying the local lemma to random injections. In order to improve the constants in our results we use a version of the local lemma due to Bissacot, Fernandez, Procacci, and Scoppola [preprint, arXiv:0910.1824]. (c) 2011 Wiley Periodicals, Inc. Random Struct. Alg., 40, 425436, 2012
Resumo:
For fixed positive integers r, k and E with 1 <= l < r and an r-uniform hypergraph H, let kappa(H, k, l) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least l elements. Consider the function KC(n, r, k, l) = max(H epsilon Hn) kappa(H, k, l), where the maximum runs over the family H-n of all r-uniform hypergraphs on n vertices. In this paper, we determine the asymptotic behavior of the function KC(n, r, k, l) for every fixed r, k and l and describe the extremal hypergraphs. This variant of a problem of Erdos and Rothschild, who considered edge colorings of graphs without a monochromatic triangle, is related to the Erdos-Ko-Rado Theorem (Erdos et al., 1961 [8]) on intersecting systems of sets. (C) 2011 Elsevier Ltd. All rights reserved.