991 resultados para Error-resilient Applications


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Combined Genetic Algorithm and Method of Moments design methods is presented for the design of unusual near-field antennas for use in Magnetic Resonance Imaging systems. The method is successfully applied to the design of an asymmetric coil structure for use at 190MHz and demonstrates excellent radiofrequency field homogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(vinylidene fluoride-trifluoethylene) electrospun membranes were obtained from a blend of dimethylformamide (DMF) and methylethylketone (MEK) solvents. The inclusion of the MEK to the solvent system promotes a faster solvent evaporation allowing complete polymer crystallization during the jet travelling between the tip and the grounded collector. Several processing parameters were systematically changed to study their influence on fiber dimensions. Applied voltage and inner needle diameter do not have large influence on the electrospun fiber average diameter but in the fiber diameter distribution. On the other hand, the increase of the distance between the needle tip to collector results in fibers with larger average diameter. Independently on the processing conditions, all mats are produced in the electroactive phase of the polymer. Further, MC-3T3-E1cell adhesion was not inhibited by the fiber mats preparation, indicating their potential use for biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-based polymers are present in a wide variety of organisms fulfilling structural and mechanical roles. Advances in protein engineering and recombinant DNA technology allow the design and production of recombinant protein-based polymers (rPBPs) with an absolute control of its composition. Although the application of recombinant proteins as biomaterials is still an emerging technology, the possibilities are limitless and far superior to natural or synthetic materials, as the complexity of the structural design can be fully customized. In this work, we report the electrospinning of two new genetically engineered silk-elastin-like proteins (SELPs) consisting of alternate silk- and elastin-like blocks. Electrospinning was performed with formic acid and aqueous solutions at different concentrations without addition of further agents. The size and morphology of the electrospun structures was characterized by scanning electron microscopy showing to be dependent of concentration and solvent used. Treatment with air saturated with methanol was employed to stabilize the structure and promote water insolubility through a time-dependent conversion of random coils into β-sheets (FTIR). The resultant methanol-treated electrospun mats were characterized for swelling degree (570-720%), water vapour transmission rate (1083 g/m2/day) and mechanical properties (modulus of elasticity of ~126 MPa). Furthermore, the methanol-treated SELP fiber mats showed no cytotoxicity and were able to support adhesion and proliferation of normal human skin fibroblasts. Adhesion was characterized by a filopodia-mediated mechanism. These results demonstrate that SELP fiber mats can provide promising solutions for the development of novel biomaterials suitable for tissue engineering applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content present in the samples, without losing the high strain deformation on the polymer matrix (~1500 %). Further, above the percolation threshold these materials are unique for the development of large deformation sensors due to the strong piezoresistive response. Piezoresistive properties evaluated by uniaxial stretching in tensile mode and 4-point bending showed a Gauge Factors up to 120. The excellent linearity obtained between strain and electrical resistance makes these composites interesting for large strain piezoresistive sensors applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of 272 nm and a degree of porosity of 87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI’s code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineer an abstract model of a user interface directly from the GUI’s legacy code. We also present results from a case study. These results are encouraging and give evidence that the goal of reverse engineering user interfaces can be met with more work on this technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Interest in design and development of graphical user interface (GUIs) is growing in the last few years. However, correctness of GUI's code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper describes our approach to reverse engineering abstract GUI models directly from the Java/Swing code.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber meshes of poly(hydroxybutyrate) (PHB) and poly(hydroxybutyrate)/ poly(ethylene oxide) (PHB/PEO) with different concentrations of chlorhexidine (CHX) were prepared by electrospinning, for assessment as a polymer based drug delivery system. The electrospun fibers were characterized at morphological, molecular and mechanical levels. The bactericidal potential of PHB and PHB/PEO electrospun fibers with and without CHX was investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by disk diffusion susceptibility tests. Electrospun fibers containing CHX exhibited bactericidal activity. PHB/PEO-1%CHX displayed higher CHX release levels and equivalent antibacterial activity when compared to PHB/PEO with 5 and 10 wt% CHX. Bactericidal performance of samples with 1 wt% CHX was assessed by Colony Forming Units (CFU), where a reduction of 100 % and 99.69 % against E. coli and S. aureus were achieved, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.