974 resultados para Epoxy Compounds


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was undertaken to assess the role of reactive oxygen species (ROS) in rat aortic ring vasoreactivity and integrity by using various peroxovanadate (pV) compounds. All the pV compounds (1 nM-300 mu M) used in the present study exerted concentration-dependent contractions on endothelium intact rat aortic rings. All compounds with an exception of DPV-asparagine (DPV-asn) significantly altered vascular integrity as shown by diminished KCl responses. Phenylephrine (PE)-mediated contractions (3 nM-300 mu M) were unaltered in the presence of these compounds. Acetylcholine (Ach)-mediated relaxation in PE (1 mu M) pre-contracted rings was significantly reduced in presence of diperoxovanadate (DPV), poly (sodium styrene sulfonate-co-maleate)-pV (PSS-CoM-pV) and poly (sodium styrene 4-sulfonate)-pV (PSS-pV). However, no significant change in Ach-mediated responses was observed in the presence of poly (acrylate)-pV (PM-pV) and DPV-asn. DPV-asn was thus chosen to further elucidate mechanism involved in peroxide mediated modulation of vasoreactivity. DPV-asn (30 nM-300 mu M) exerted significantly more stable contractions, that was found to be catalase (100 U/ml) resistant in comparison with H(2)O(2) (30 nM-300 mu M) in endothelium intact aortic rings. These contractile responses were found to be dependent on extracellular Ca(2+) and were significantly inhibited in presence of ROS scavenger N-acetylcysteine (100 mu M). Intracellular calcium chelation by BAPTA-AM (10 mu M) had no significant effect on DPV-asn (30 nM-300 mu M) mediated contraction. Pretreatment of aortic rings by rho-kinase inhibitor Y-27632 (10 mu M) significantly inhibited DPV-asn-mediated vasoconstriction indicating role of voltage-dependent Ca(2+) influx and downstream activation of rho-kinase. The small initial relaxant effect obtained on addition of DPV-asn (30 nM-1 mu M) in PE (1 mu M) pre-contracted endothelium intact rings, was prevented in the presence of guanylate cyclase inhibitor, methylene blue (10 mu M) and/or nitric oxide synthase (NOS) inhibitor, L-NAME (100 mu M) suggesting involvement of nitric oxide and cGMP. DPV-asn, like H(2)O(2), exerted a response of vasoconstriction in normal arteries and vasodilation at low concentrations (30 nM-1 mu M) in PE-pre contracted rings with overlapping mechanisms. These findings suggest usefulness of DPV-asn having low toxicity, in exploring the peroxide-mediated effects on various vascular beds. The present study also convincingly demonstrates role of H(2)O(2) in the modulation of vasoreactivity by using stable peroxide DPV-asn and warrants future studies on peroxide mediated signaling from a newer perspective. (C) 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this mini-review, I discuss some recent work on the stereochemistry and bonding of lone pairs of electrons in divalent compounds of the heavier carbon group elements (SnII, PbII) and in trivalent compounds of the heavier nitrogen group elements (BiIII). Recently developed methods that permit the real-space visualization of bonding patterns on the basis of density functional calculations of electronic structure, reveal details of the nature of s electron lone pairs in compounds of the heavier main group elements – their stereochemistry and their inertness (or lack thereof). An examination of tetragonal P4/nmm SnO, a-PbO and BiOF, and cubic Fm3m PbS provides a segue into perovskite phases of technological significance, including ferroelectric PbTiO3 and antiferroelectric/piezoelectric PbZrO3, in both of which the lone pairs on Pb atoms play a pivotal rôle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic amount of vanadium reagent with tert-butylhydroperoxide as the oxidant was found to be an excellent oxidizing agent in aqueous medium. Vanadium pentoxide with aq tert-butylhydroperoxide readily oxidizes primary benzylic azides to the corresponding acids and secondary benzylic azides to the corresponding ketones in excellent yields. Further, vanadium pentoxide and aq tert-butylhydroperoxide combination turned out to be an effective catalyst for the oxidation of alcohols. Using vanadium pentoxide and aq tert-butylhydroperoxide primary alcohols were oxidized to the corresponding acids, whereas secondary alcohols underwent a smooth transformation to furnish corresponding ketones in excellent yields. All the oxidations are performed in water. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gibbs energies of formation of MPt5 (MNd, Dy, Ho, Er) intermetallic compounds were determined in the temperature range 900–1100 K using the solid state cell Ta,M+MF3¦CaF2¦MPt5+Pt+MF3,Ta For M ≡ Sm, a mixture of Gd + GdF3 was used as the reference electrode. In the case of Eu, a mixture of Eu + EuF2 served as the reference electrode. The trifluorides of Sm and Eu are not stable in equilibrium with the metal. The fluoride phase coexisting with a SmPt5 + Pt mixture is SmF3, whereas EuF2 is the equilibrium phase in contact with EuPt5 + Pt. All the MPt5 compounds studied (except EuPt5) exhibit similar stability. Europium is divalent in the pure metal and trivalent in EuPt5. The energy required for the promotion of divalent Eu to the trivalent state accounts for the less negative Gibbs energy of formation of EuPt5. The enthalpies of formation of all the MPt5 compounds obtained in this study are in good agreement with Miedema's model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs' free energies of formation of compounds of type Cu2L%05 (Ln = Tb,Dy,Er,Yb) were measured using the solid state cell in the temperature range of 970 to 1323 K For formation of Cu2L?O5 compounds from their binary component oxides according to the reaction 2 CUO (s) + L%03 (s) -, Cu,,L%05 (s),the Gibbs' free energy changes can be represented by the following equations:AGO = 13 080 - 13.70 'I" (+80) J mol-' (Ln = Tb)AGq = 11 480 - 13.51 T (260) J mol-I (Ln = Dy)AGO = 10 750 - 13.99 T (260) J mol-I (Ln = Er)AGO = 9 920 - 13.90 T (260) J mol-' (Ln = Yb) Since formation of the compounds is endothermic, the compounds become thermodynamically unstable with respect to their component oxides below 955 K for Cu2Tb205, 850 K for Cu2Dy205, 768 K for Cu2Er205 and 714 K for Cu2Yb2OS When the oxygen partial pressure over Cu2L%05 is lowered, they decompose according to the scheme, 2 CU,L%O, (s) -r 2 L%03 (s) +2 cu20 (s) + 02(g)The equilibrium chemical potentials of oxygen corresponding to the dissociation reactions are computed from the emf data and auxiliary information on Cu20 and CuO. The computed decomposition temperatures at an oxygen partial pressure of 5.0 x ld Pa are compared with those obtained directly from combined thermogravimetric (TGA) and differential thermal analyses (DTA).The free energy, enthalpy and entropy of formation of Cu2Ln205 compounds show systematic variation with the ionic radius of the trivalent lanthanide ion. The trends obtained in this study are compared with information available in the literature. The staZbility of Cu2Ln205 compounds increases with the decrease in ionic radii of the ~ n ion~. +

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient-condition Raman spectra were collected in the strongly correlated NiS(1-x)Se(x) pyrite (0 <= x <= 1.2). Two samples (x = 0 and x = 0.55) were studied as a function of pressure up to 10 GPa, and for the x = 0.55 sample the pressure dependence of the infrared reflectivity was also measured (0-10 GPa). This gave a complete picture of the optical response of that system on approaching the metallic state both by application of pressure and/or by Se alloying, which corresponds to a volume expansion. A peculiar nonmonotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds. In the x = 0.55 sample the vibrational frequencies of the chalcogen dimer show an anomalous volume dependence on entering the metallic phase. The abrupt softening observed, particularly significant for the Se-Se pair, indicates the relevant role of the softness of the Se-Se bond as previously suggested by theoretical calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract | The importance of well-defined inorganic porous nanostructured materials in the context of biotechnological applications such as drug delivery and biomolecular sensing is reviewed here in detail. Under optimized conditions, the confinement of “bio”-relevant molecules such as pharmaceutical drugs, enzymes or proteins inside such inorganic nanostructures may be remarkably beneficial leading to enhanced molecular stability, activity and performance. From the point of view of basic research, molecular confinement inside nanostructures poses several formidable and intriguing problems of statistical mechanics at the mesoscopic scale. The theoretical comprehension of such non-trivial issues will not only aid in the interpretation of observed phenomena but also help in designing better inorganic nanostructured materials for biotechnological applications.