961 resultados para Environmental effects on human beings
Resumo:
The interest in solar ultraviolet (UV) radiation from the scientific community and the general population has risen significantly in recent years because of the link between increased UV levels at the Earth's surface and depletion of ozone in the stratosphere. As a consequence of recent research, UV radiation climatologies have been developed, and effects of some atmospheric constituents (such as ozone or aerosols) have been studied broadly. Correspondingly, there are well-established relationships between, for example, total ozone column and UV radiation levels at the Earth's surface. Effects of clouds, however, are not so well described, given the intrinsic difficulties in properly describing cloud characteristics. Nevertheless, the effect of clouds cannot be neglected, and the variability that clouds induce on UV radiation is particularly significant when short timescales are involved. In this review we show, summarize, and compare several works that deal with the effect of clouds on UV radiation. Specifically, works reviewed here approach the issue from the empirical point of view: Some relationship between measured UV radiation in cloudy conditions and cloud-related information is given in each work. Basically, there are two groups of methods: techniques that are based on observations of cloudiness (either from human observers or by using devices such as sky cameras) and techniques that use measurements of broadband solar radiation as a surrogate for cloud observations. Some techniques combine both types of information. Comparison of results from different works is addressed through using the cloud modification factor (CMF) defined as the ratio between measured UV radiation in a cloudy sky and calculated radiation for a cloudless sky. Typical CMF values for overcast skies range from 0.3 to 0.7, depending both on cloud type and characteristics. Despite this large dispersion of values corresponding to the same cloud cover, it is clear that the cloud effect on UV radiation is 15–45% lower than the cloud effect on total solar radiation. The cloud effect is usually a reducing effect, but a significant number of works report an enhancement effect (that is increased UV radiation levels at the surface) due to the presence of clouds. The review concludes with some recommendations for future studies aimed to further analyze the cloud effects on UV radiation
Resumo:
Abstract: Protective immune responses against pathogen invasion and transformed cells requires the coordinated action of distinct leukocyte subsets and soluble factors, overall termed immunological network. Among antigen-presenting cells (APC), a crucial role is played by dendritic cells (DC), which initiate, amplify and determine the outcome of the immune response. Micro-environmental conditions profoundly influence DC in such ways that the resulting immune response ranges from successful immune stimulation to abortive response or immune suppression. For instance, the presence in the milieu of anti-inflammatory cytokine interleukin-10 (IL-10) reverts most of the effects mediated on DC by even strong pro-inflammatory agents such as bacterial Lipopolysaccharide (LPS), in terms of differentiation, activation and functions. In an environment containing both LPS and IL-10, uncoupling of receptors for inflammatory chemokines already occurs after a few hours and in a reversible manner on DC, allowing scavenging of chemokines and, consequently, attenuation of the inflammatory process which could be deleterious to the organism. By studying the effects on DC of concomitant stimulation by LPS and IL-10 from the gene expression point of view, we were able to define four distinct transcriptional programs: A. the inhibition of inflammation and immunity, B. the regulation of tissue remodeling, C. the tuning of cytokine/growth factor receptors and G protein-coupled receptors, D. the stimulation of B cell function and lymphoid tissue neogenesis. Among the latter genes, we further demonstrated that IL-10 synergizes with Toll-like receptor ligands for the production of functionally active B cell attracting chemokine CXCL13. Our data provide evidence that the combined exposure of APC to LPS and IL-10, via the production of CXCL13, involves humoral immunity by attracting antibody-producing cells. It is well known that the persistent release of CXCL13 leads to the development of ectopic lymphoid tissue aggregates and production of high levels of antibodies, thus favoring the induction of auto-immunity. Our findings suggest that the IL-10 produced in chronic inflammatory conditions may promote lymphoid tissue neogenesis through increased release of CXCL13. IL-10 is an anti-inflammatory cytokine inhibiting cellular-mediated TH 1-polarized immune responses. In this study we demonstrate that IL- 10 strongly supports the development of humoral immunity. IL-10 and CXCL13 can thus be targets for specific therapies in auto-immune diseases.
Resumo:
As adult height is a well-established retrospective measure of health and standard of living, it is important to understand the factors that determine it. Among them, the influence of socio-environmental factors has been subjected to empirical scrutiny. This paper explores the influence of generational (or environmental) effects and individual and gender-specific heterogeneity on adult height. Our data set is from contemporary Spain, a country governed by an authoritarian regime between 1939 and 1977. First, we use normal position and quantile regression analysis to identify the determinants of self-reported adult height and to measure the influence of individual heterogeneity. Second, we use a Blinder-Oaxaca decomposition approach to explain the `gender height gap¿ and its distribution, so as to measure the influence on this gap of individual heterogeneity. Our findings suggest a significant increase in adult height in the generations that benefited from the country¿s economic liberalization in the 1950s, and especially those brought up after the transition to democracy in the 1970s. In contrast, distributional effects on height suggest that only in recent generations has ¿height increased more among the tallest¿. Although the mean gender height gap is 11 cm, generational effects and other controls such as individual capabilities explain on average roughly 5% of this difference, a figure that rises to 10% in the lowest 10% quantile.
Resumo:
As adult height is a well-established retrospective measure of health and standard of living, it is important to understand the factors that determine it. Among them, the influence of socio-environmental factors has been subjected to empirical scrutiny. This paper explores the influence of generational (or environmental) effects and individual and gender-specific heterogeneity on adult height. Our data set is from contemporary Spain, a country governed by an authoritarian regime between 1939 and 1977. First, we use normal position and quantile regression analysis to identify the determinants of self-reported adult height and to measure the influence of individual heterogeneity. Second, we use a Blinder-Oaxaca decomposition approach to explain the `gender height gap¿ and its distribution, so as to measure the influence on this gap of individual heterogeneity. Our findings suggest a significant increase in adult height in the generations that benefited from the country¿s economic liberalization in the 1950s, and especially those brought up after the transition to democracy in the 1970s. In contrast, distributional effects on height suggest that only in recent generations has ¿height increased more among the tallest¿. Although the mean gender height gap is 11 cm, generational effects and other controls such as individual capabilities explain on average roughly 5% of this difference, a figure that rises to 10% in the lowest 10% quantile.
Resumo:
Les pressions écologiques peuvent varier tant en nature qu'en intensité dans le temps et l'espace. C'est pourquoi, un phénotype unique ne peut pas forcément conférer la meilleure valeur sélective. La plasticité phénotypique peut être un moyen de s'accommoder de cette situation, en augmentant globalement la tolérance aux changements environnementaux. Comme pour tout trait de caractère, une variation génétique doit persister pour qu'évoluent les traits plastiques dans une population donnée. Cependant, les pressions extérieures peuvent affecter l'héritabilité, et la direction de ces changements peut dépendre du caractère en question, de l'espèce mais aussi du type de stress. Dans la présente thèse, nous avons cherché à élucider les effets des pressions pathogéniques sur les phénotypes et la génétique quantitative de plusieurs traits plastiques chez les embryons de deux salmonidés, la palée (Coregonus palaea), et la truite de rivière (Salmo trutta). Les salmonidés se prêtent à de telles études du fait de leur extraordinaire variabilité morphologique, comportementale et des traits d'histoire de vie. Par ailleurs, avec le déclin des salmonidés dans le monde, il est important de savoir combien la variabilité génétique persiste dans les normes de réaction afin d'aider à prédire leur capacité à répondre aux changements de leur milieu. Nous avons observé qu'une augmentation de la croissance des communautés microbiennes symbiotiques entraînait une mortalité accrue et une éclosion précoce chez la palée, et dévoilait la variance génétique additive pour ces deux caractères (Chapitres 1-2). Bien qu'aucune variation génétique n'ait été trouvée pour les normes de réaction, nous avons observé une variabilité de la plasticité d'éclosion. Néanmoins, on a trouvé que les temps d'éclosion étaient corrélés entre les environnements, ce qui pourrait limiter l'évolution de la norme de réaction. Le temps d'éclosion des embryons est lié à la taille des géniteurs mâles, ce qui indique des effets pléiotropiques. Dans le Chapitre 3, nous avons montré qu'une interaction triple entre la souche bactérienne {Pseudomonas fluorescens}, l'état de dévelopement de l'hôte ainsi que ses gènes ont une influence sur la mortalité, le temps d'éclosion et la taille des alevins de la palée. Nous avons démontré qu'une variation génétique subsistait généralement dans les normes de réaction des temps d'éclosion, mais rarement pour la taille des alevins, et jamais pour la mortalité. Dans le même temps, nous avons exhibé que des corrélations entre environnements dépendaient des caractères phénotypiques, mais contrairement au Chapitre 2, nous n'avons pas trouvé de preuve de corrélations transgénérationnelles. Le Chapitre 4 complète le chapitre précédent, en se plaçant du point de vue moléculaire, et décrit comment le traitement d'embryons avec P. fluorescens s'est traduit par une régulation négative d'expression du CMH-I indépendemment de la souche bactérienne. Nous avons non seulement trouvé une variation génétique des caractères phénotypiques moyens, mais aussi de la plasticité. Les deux derniers chapitres traitent de l'investigation, chez la truite de rivière, des différences spécifiques entre populations pour des normes de réaction induites par les pathogènes. Dans le Chapitre 5, nous avons illustré que le métissage entre des populations génétiquement distinctes n'affectait en rien la hauteur ou la forme des normes de réaction d'un trait précoce d'histoire de vie suite au traitement pathogénique. De surcroît, en dépit de l'éclosion tardive et de la réduction de la taille des alevins, le traitement n'a pas modifié la variation héritable des traits de caractère. D'autre part, dans le Chapitre 6, nous avons démontré que le traitement d'embryons avec des stimuli contenus dans l'eau de conspécifiques infectés a entraîné des réponses propre à chaque population en terme de temps d'éclosion ; néanmoins, nous avons observé peu de variabilité génétique des normes de réaction pour ce temps d'éclosion au sein des populations. - Ecological stressors can vary in type and intensity over space and time, and as such, a single phenotype may not confer the highest fitness. Phenotypic plasticity can act as a means to accommodate this situation, increasing overall tolerance to environmental change. As with any trait, for plastic traits to evolve in a population, genetic variation must persist. However, environmental stress can alter trait heritability, and the direction of this shift can be trait, species, and stressor-dependent. In this thesis, we sought to understand the effects of pathogen stressors on the phenotypes and genetic architecture of several plastic traits in the embryos of two salmonids, the whitefish (Coregonus palaea), and the brown trout (Salmo trutta). Salmonids lend themselves to such studies because their extraordinary variability in morphological, behavioral, and life-history traits. Also, with declines in salmonids worldwide, knowing how much genetic variability persists in reaction norms may help predict their ability to respond to environmental change. We found that increasing growth of symbiotic microbial communities increased mortality and induced hatching in whitefish, and released additive genetic variance for both traits (Chapters 1-2). While no genetic variation was found for survival reaction norms, we did find variability in hatching plasticity. Nevertheless, hatching time was correlated across environments, which could constrain evolution of the reaction norm. Hatching time in the induced environment was also correlated to sire size, indicating pleiotropic effects. In Chapter 3 we report that a three-way interaction between bacterial strain (Pseudomonas fluorescens), host developmental stage, and host genetics impacted mortality, hatching time, and hatchling size in whitefish. We also showed that genetic variation generally persisted in hatching age reaction norms, but rarely for hatchling length, and never for mortality. At the same time, we demonstrated that cross-environmental correlations were trait-dependent, and unlike Chapter 2, we found no evidence of cross-generational correlations. Chapter 4 expands on the previous chapter, moving to the molecular level, and describes how treatment of embryos with P. fluorescens resulted in strain-independent downregulation of MHC class I. Genetic variation was evident not only in trait means, but also in plasticity. In the last two chapters, we investigated population level differences in pathogen- induced reaction norms in brown trout. In Chapter 5, we found that interbreeding between genetically distinct populations did not affect the elevation or shapes of the reaction norms of early life-history traits after pathogen challenge. Moreover, despite delaying hatching and reducing larval length, treatment produced no discernable shifts in heritable variation in traits. On the other hand, in Chapter 6, we found that treatment of embryos with water-borne cues from infected conspecifics elicited population-specific responses in terms of hatching time; however, we found little evidence of genetic variability in hatching reaction norms within populations. We have made considerable progress in understanding how pathogen stressors affect various early life-history traits in salmonid embryos. We have demonstrated that the effect of a particular stressor on heritable variation in these traits can vary according to the trait and species under consideration, in addition to the developmental stage of the host. Moreover, we found evidence of genetic variability in some, but not all reaction norms in whitefish and brown trout.
Resumo:
Our police work against human trafficking started in 2004 on behalf of the government. (Police Department received 300 000 euros which was divided between the three largest cities in Sweden, Stockholm, Gothenburg and Malmö. Then, each police district had to find out how .THB looked like in their district and how it best could be combated.
Resumo:
Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-gamma. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-gamma production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-gamma production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-gamma production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I-specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
Resumo:
The objective of this work was to determine the effects of seed priming and sulfur application on cell membrane characteristics, seedling emergence, chlorophyll content and grain yield of soybean (Glycine max) in saline soil. A complete-block design in 4x3 factorial arrangement with three replicates was used to test four types of seed priming (water, auxin, gibberellin and non-priming) and three levels of sulfate availability (0, 70 and 140 kg ha-1 K2SO4). The soil had a silty loam texture with an electrical conductivity of 3.61 ds m-1, a pH of 8.2 and a saturation percentage of about 46%. Seed priming had significant effects on mean emergence rate (MER), emergence percentage, relative water content (RWC) of leaves, relative chlorophyll content, time of maturity, shoot length and grain yield. The highest values for these variables were observed in the priming treatments, except for the time of maturity. Sulfur application had significant effects on MER, shoot length, RWC, membrane injury index and grain yield. Priming treatments provide greater emergence rates and grain yields and interact sinergicaly with sulfur rates.
Resumo:
The ability of a population to adapt to changing environments depends critically on the amount and kind of genetic variability it possesses. Mutations are an important source of new genetic variability and may lead to new adaptations, especially if the population size is large. Mutation rates are extremely variable between and within species, and males usually have higher mutation rates as a result of elevated rates of male germ cell division. This male bias affects the overall mutation rate. We examined the factors that influence male mutation bias, and focused on the effects of classical life-history parameters, such as the average age at reproduction and elevated rates of sperm production in response to sexual selection and sperm competition. We argue that human-induced changes in age at reproduction or in sexual selection will affect male mutation biases and hence overall mutation rates. Depending on the effective population size, these changes are likely to influence the long-term persistence of a population.
Resumo:
The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.
Resumo:
The aim of this study was to evaluate the reliability of insect larvae as samples for toxicological investigations. For this purpose, larvae of Lucilia sericata were reared on samples of minced pig liver treated with different concentrations of codeine: therapeutic, toxic, and potentially lethal doses. Codeine was detected in all tested larvae, confirming the reliability of these specimens for qualitative toxicology analysis. Furthermore, concentrations measured in larvae were correlated with levels in liver tissue. These observations bring new elements regarding the potential use of opiates concentrations in larvae for estimation of drug levels in human tissues. Morphine and norcodeine, two codeine metabolites, have been also detected at different concentrations depending on the concentration of codeine in pig liver and depending on the substance itself. The effects of codeine on the development of L. sericata were also investigated. Results showed that a 29-h interval bias on the evaluation of the larval stage duration calculated from the larvae weight has to be considered if codeine was present in the larvae substrate. Similarly, a 21-h interval bias on the total duration of development, from egg to imago, has to be considered if codeine was present in the larvae substrate.
Resumo:
Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.
Resumo:
Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.
Resumo:
Major oil spills can have long-term impacts since oil pollution does not only result in acute mortality of marine organisms, but also affects productivity levels, predator-prey dynamics, and damages habitats that support marine communities. However, despite the conservation implications of oil accidents, the monitoring and assessment of its lasting impacts still remains a difficult and daunting task. Here, we used European shags to evaluate the overall, lasting effects of the Prestige oil spill (2002) on the affected marine ecosystem. Using δ15N and Hg analysis, we trace temporal changes in feeding ecology potentially related to alterations of the food web due to the spill. Using climatic and oceanic data, we also investigate the influence of North Atlantic Oscillation (NAO) index, the sea surface temperature (SST) and the chlorophyll a (Chl a) on the observed changes. Analysis of δ15N and Hg concentrations revealed that after the Prestige oil spill, shag chicks abruptly switched their trophic level from a diet based on a high percentage of demersal-benthic fish to a higher proportion of pelagic/semi-pelagic species. There was no evidence that Chl a, SST and NAO reflected any particular changes or severity in environmental conditions for any year or season that may explain the sudden change observed in trophic level. Thus, this study highlighted an impact on the marine food web for at least three years. Our results provide the best evidence to date of the long-term consequences of the Prestige oil spill. They also show how, regardless of wider oceanographic variability, lasting impacts on predator-prey dynamics can be assessed using biochemical markers. This is particularly useful if larger scale and longer term monitoring of all trophic levels is unfeasible due to limited funding or high ecosystem complexity.
Resumo:
The current challenge in a context of major environmental changes is to anticipate the responses of species to future landscape and climate scenarios. In the Mediterranean basin, climate change is one the most powerful driving forces of fire dynamics, with fire frequency and impact having markedly increased in recent years. Species distribution modelling plays a fundamental role in this challenge, but better integration of available ecological knowledge is needed to adequately guide conservation efforts. Here, we quantified changes in habitat suitability of an early-succession bird in Catalonia, the Dartford Warbler (Sylvia undata) ― globally evaluated as Near Threatened in the IUCN Red List. We assessed potential changes in species distributions between 2000 and 2050 under different fire management and climate change scenarios and described landscape dynamics using a spatially-explicit fire-succession model that simulates fire impacts in the landscape and post-fire regeneration (MEDFIRE model). Dartford Warbler occurrence data were acquired at two different spatial scales from: 1) the Atlas of European Breeding Birds (EBCC) and 2) Catalan Breeding Bird Atlas (CBBA). Habitat suitability was modelled using five widely-used modelling techniques in an ensemble forecasting framework. Our results indicated considerable habitat suitability losses (ranging between 47% and 57% in baseline scenarios), which were modulated to a large extent by fire regime changes derived from fire management policies and climate changes. Such result highlighted the need for taking the spatial interaction between climate changes, fire-mediated landscape dynamics and fire management policies into account for coherently anticipating habitat suitability changes of early succession bird species. We conclude that fire management programs need to be integrated into conservation plans to effectively preserve sparsely forested and early succession habitats and their associated species in the face of global environmental change.