331 resultados para Elm
Resumo:
Much of biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, casecontrol, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed “Explanation and Elaboration” document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
Much medical research is observational. The reporting of observational studies is often of insufficient quality. Poor reporting hampers the assessment of the strengths and weaknesses of a study and the generalisability of its results. Taking into account empirical evidence and theoretical considerations, a group of methodologists, researchers, and editors developed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) recommendations to improve the quality of reporting of observational studies. The STROBE Statement consists of a checklist of 22 items, which relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to cohort studies, case-control studies and cross-sectional studies and four are specific to each of the three study designs. The STROBE Statement provides guidance to authors about how to improve the reporting of observational studies and facilitates critical appraisal and interpretation of studies by reviewers, journal editors and readers. This explanatory and elaboration document is intended to enhance the use, understanding, and dissemination of the STROBE Statement. The meaning and rationale for each checklist item are presented. For each item, one or several published examples and, where possible, references to relevant empirical studies and methodological literature are provided. Examples of useful flow diagrams are also included. The STROBE Statement, this document, and the associated Web site (http://www.strobe-statement.org/) should be helpful resources to improve reporting of observational research.
Resumo:
BACKGROUND: This empirical study analyzes the current status of Cochrane Reviews (CRs) and their strength of recommendation for evidence-based decision making in the field of general surgery. METHODS: Systematic literature search of the Cochrane Database of Systematic Reviews and the Cochrane Collaboration's homepage to identify available CRs on surgical topics. Quantitative and qualitative characteristics, utilization, and formulated treatment recommendations were evaluated by 2 independent reviewers. Association of review characteristics with treatment recommendation was analyzed using univariate and multivariate logistic regression models. RESULTS: Ninety-three CRs, including 1,403 primary studies and 246,473 patients, were identified. Mean number of included primary studies per CR was 15.1 (standard deviation [SD] 14.5) including 2,650 (SD 3,340) study patients. Two and a half (SD 8.3) nonrandomized trials were included per analyzed CR. Seventy-two (77%) CRs were published or updated in 2005 or later. Explicit treatment recommendations were given in 45 (48%). Presence of a treatment recommendation was associated with the number of included primary studies and the proportion of randomized studies. Utilization of surgical CRs remained low and showed large inter-country differences. The most surgical CRs were accessed in UK, USA, and Australia, followed by several Western and Eastern European countries. CONCLUSION: Only a minority of available CRs address surgical questions and their current usage is low. Instead of unsystematically increasing the number of surgical CRs it would be far more efficient to focus the review process on relevant surgical questions. Prioritization of CRs needs valid methods which should be developed by the scientific surgical community.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of OBservational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence, the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association (STREGA) studies initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed, but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
This paper explores the similarities and differences between Denmark and Australia in adopting welfare reform activation measures in the field of employment services. In Australia and Denmark the discourse of welfare reform centres the 'activation' of citizens through 'mutual obligation' type requirements. Through various forms of case management, unemployed individuals are encouraged to act upon themselves in creating the right set of ethical dispositions congruent with 'active citizenship'. At the same time any resistance to heightened conditionality on the part of the unemployed person is dealt with through a range of coercive and disciplinary techniques. A comparative case study between these two countries allows us to consider how similar ideas, discourse and principles are shaping policy implementation in countries that have very different welfare state trajectories and institutional arrangements for the delivery of social welfare generally and employment services specifically. And in research terms, a comparison between a Nordic welfare state and an Anglo-Saxon welfare state provides an opportunity to critically examine the utility of 'welfare regime' type analyses and the neo-liberal convergence thesis in comparative welfare research. On the basis of empirical analysis, the article concludes that a single focus on abstract typologies or political ideologies is not very helpful in getting the measure of welfare reform (or any other major policy development for that matter). At the 'street-level' of policy practice there is considerably more ambiguity, incoherence and contradiction than is suggested by linear accounts of welfare reform.
Resumo:
OBJECTIVES To identify factors associated with discrepant outcome reporting in randomized drug trials. STUDY DESIGN AND SETTING Cohort study of protocols submitted to a Swiss ethics committee 1988-1998: 227 protocols and amendments were compared with 333 matching articles published during 1990-2008. Discrepant reporting was defined as addition, omission, or reclassification of outcomes. RESULTS Overall, 870 of 2,966 unique outcomes were reported discrepantly (29.3%). Among protocol-defined primary outcomes, 6.9% were not reported (19 of 274), whereas 10.4% of reported outcomes (30 of 288) were not defined in the protocol. Corresponding percentages for secondary outcomes were 19.0% (284 of 1,495) and 14.1% (334 of 2,375). Discrepant reporting was more likely if P values were <0.05 compared with P ≥ 0.05 [adjusted odds ratio (aOR): 1.38; 95% confidence interval (CI): 1.07, 1.78], more likely for efficacy compared with harm outcomes (aOR: 2.99; 95% CI: 2.08, 4.30) and more likely for composite than for single outcomes (aOR: 1.48; 95% CI: 1.00, 2.20). Cardiology (aOR: 2.34; 95% CI: 1.44, 3.79) and infectious diseases (aOR: 1.77; 95% CI: 1.01, 3.13) had more discrepancies compared with all specialties combined. CONCLUSION Discrepant reporting was associated with statistical significance of results, type of outcome, and specialty area. Trial protocols should be made freely available, and the publications should describe and justify any changes made to protocol-defined outcomes.