994 resultados para Electron scattering
Resumo:
We have carried out optical Thomson scattering measurements from a laser induced breakdown in He at 1 atmosphere. The breakdown was created with a Nd:YAG laser with 9ns pulse duration and 400mJ pulse energy focused into a chamber filled with He. A second harmonic Nd: YAG laser with 9ns pulses and up to 80mJ energy was used to obtain temporally and spatially resolved data on the electron density and temperature. In parallel experiments, we measured the emission of the 447.1nm line from He I. Initial results suggest good agreement between densities inferred but full Abel inversion is needed for conclusive results.
Resumo:
Reflecting light from a mirror moving close to the speed of light has been envisioned as a route towards producing bright X-ray pulses since Einstein's seminal work on special relativity. For an ideal relativistic mirror, the peak power of the reflected radiation can substantially exceed that of the incident radiation due to the increase in photon energy and accompanying temporal compression. Here we demonstrate for the first time that dense relativistic electron mirrors can be created from the interaction of a high-intensity laser pulse with a freestanding, nanometre-scale thin foil. The mirror structures are shown to shift the frequency of a counter-propagating laser pulse coherently from the infrared to the extreme ultraviolet with an efficiency >10 4 times higher than in the case of incoherent scattering. Our results elucidate the reflection process of laser-generated electron mirrors and give clear guidance for future developments of a relativistic mirror structure.
Resumo:
Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.
Resumo:
Electron-excitation collision strengths have been calculated for transitions between the ten lowest levels of Ca XVII (2sS, 2s2p P, 2s2p P, 2pP 2p D, 2pS ). At high impact energies, where all the channels are open, the calculation was carried out in the LS-coupling approximation by means of the R-matrix method. Transitions between the fine structure levels were then determined by application of a unitary transformation to the LS-coupled K-matrices. At low impact energies, where some of the channels may be closed, an extension of the R-matrix method was employed to take account of relativistic effects directly in the scattering equations. In general, results are in good agreement with recent distorted-wave calculations. Electron-excitation rates are given for a range of electron temperatures.
Resumo:
Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
Context: Mg VIII emission lines are observed in a range of astronomical objects such as the Sun, other cool stars and in the coronal line region of Seyfert galaxies. Under coronal conditions Mg VIII emits strongly in the extreme ultraviolet (EUV) and soft X-ray spectral regions which makes it an ideal ion for plasma diagnostics.
Aims. Two theoretical atomic models, consisting of 125 fine structure levels, are developed for the Mg VIII ion. The 125 levels arise from the 2s(2)2p, 2s(2)p2, 2p(3), 2s(2)3s, 2s(2)3p, 2s(2)3d, 2s2p3s, 2s2p3p, 2s2p3d, 2p(2)3s, 2p(2)3p and 2p(2)3d configurations. Electron impact excitation collision strengths and radiative transition probabilities are calculated for both Mg VIII models, compared with existing data, and the best model selected to generate a set of theoretical emission line intensities. The EUV lines, covering 312-790 angstrom, are compared with existing solar spectra (SERTS-89 and SUMER), while the soft X-ray transitions (69-97 angstrom) are examined for potential density diagnostic line ratios and also compared with the limited available solar and stellar observational data.
Methods. The R-matrix codes Breit-Pauli RMATRXI and RMATRXII are utilised, along with the PSTGF code, to calculate the collision strengths for two Mg VIII models. Collision strengths are averaged over a Maxwellian distribution to produce the corresponding effective collision strengths for use in astrophysical applications. Transition probabilities are also calculated using the CIV3 atomic structure code. The best data are then incorporated into the modelling code CLOUDY and line intensities generated for a range of electron temperatures and densities appropriate to solar and stellar coronal plasmas.
Results. The present effective collision strengths are compared with two previous calculations. Good levels of agreement are found with the most recent, but there are large differences with the other for forbidden transitions. The resulting line intensities compare favourably with the observed values from the SERTS-89 and SUMER spectra. Theoretical soft X-ray emission lines are presented and several density diagnostic line ratios examined, which are in reasonable agreement with the limited observational data available.
Resumo:
Context. Absorption or emission lines of Fe II are observed in many astrophysical spectra and accurate atomic data are required to interpret these lines. The calculation of electron-impact excitation rates for transitions among even the lowest lying levels of Fe II is a formidable task for theoreticians.
Aims. In this paper, we present collision strengths and effective collision strengths for electron-impact excitation of Fe II for low-lying forbidden transitions among the lowest 16 fine-structure levels arising from the four LS states 3d(6)4s D-6(e), 3d(7) F-4(e), 3d(6)4s D-4(e), and 3d(7) P-4(e). The effective collision strengths are calculated for a wide range of electron temperatures of astrophysical importance from 30-100 000 K.
Methods. The parallel suite of Breit-Pauli codes are utilised to compute the collision cross sections for electron-impact excitation of Fe II and relativistic terms are included explicitly in both the target and the scattering approximation. 100 LS or 262-jj levels formed from the basis configurations 3d(6)4s, 3d(7), and 3d(6)4p were included in the wavefunction representation of the target, including all doublet, quartet, and sextet terms. Collision strengths for a total of 34191 individual transitions were computed.
Results. A detailed comparison is made with previous theoretical works and significant differences were found to occur in the effective collision strengths, particularly at low temperatures.
Resumo:
The surface roughness of nominally smooth and of randomly roughened thin silver films is characterized using scanning tunneling microscopy and the metal grain size is assessed using transmission electron microscopy. On each type of substrate used, glass or CaF2-roughened glass, the silver films are deposited either very slowly (approximately 0.15 nm s-1) or quite quickly (approximately 2.0 nm s-1). Only silver films deposited on CaF2-roughened glass yield measurable surface-enhanced Raman signals for benzoic acid; the enhancement is brought about by surface field amplification due to the excitation of delocalized surface-plasmon polaritons. However, the surface-enhanced Raman signals obtained from the slow-deposited silver films are significantly better (by about a factor of 3) than those obtained from the fast-deposited silver films on a given CaF2-roughened substrate. The explanation of this observation does not lie with different surface roughness; both types of film yield closely similar data on the scanning tunneling microscope. Rather, it is suggested that the relatively small grain size of the fast-deposited silver films leads to increased elastic scattering of surface-plasmon polaritons at the grain boundaries, with a consequent increase of internal damping. This results in a reduction of the scattered Raman signal.
Resumo:
We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.
Resumo:
Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.
Resumo:
We report on the generation of a narrow divergence (θγ<2.5mrad), multi-MeV (Emax≈18MeV) and ultrahigh peak brilliance (>1.8×1020photonss-1mm-2mrad-2 0.1% BW) γ-ray beam from the scattering of an ultrarelativistic laser-wakefield accelerated electron beam in the field of a relativistically intense laser (dimensionless amplitude a0≈2). The spectrum of the generated γ-ray beam is measured, with MeV resolution, seamlessly from 6 to 18 MeV, giving clear evidence of the onset of nonlinear relativistic Thomson scattering. To the best of our knowledge, this photon source has the highest peak brilliance in the multi-MeV regime ever reported in the literature.
Resumo:
Measurement of the dynamic properties of hydrogen and helium under extreme pressures is a key to understanding the physics of planetary interiors. The inelastic scattering signal from statically compressed hydrogen inside diamond anvil cells at 2.8 GPa and 6.4 GPa was measured at the Diamond Light Source synchrotron facility in the UK. The first direct measurement of the local field correction to the Coulomb interactions in degenerate plasmas was obtained from spectral shifts in the scattering data and compared to predictions by the Utsumi-Ichimaru theory for degenerate electron liquids.
Resumo:
The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.
Resumo:
It is shown theoretically that LEED patterns from ordered overlayer systems bear a strong relationship to electron holograms, and that phase information is recorded in the diffraction intensities. It is, therefore, possible to obtain structural information by direct holographic inversion from conventional LEED I-V spectra.