893 resultados para Electrode array
Resumo:
This work presents the electro-optical characterization of metal-organic interfaces prepared by the Ion Beam Assisted Deposition (IBAD) method. IBAD applied in this work combines simultaneously metallic film deposition and bombardment with an independently controlled ion beam, allowing different penetration of the ions and the evaporated metallic elements into the polymer. The result is a hybrid, non-abrupt interface, where polymer, metal and ion coexists. We used an organic light emitting diode, which has a typical vertical-architecture, for the interface characterization: Glass/Indium Tin Oxide (ITO)/Poly[ethylene-dioxythiophene/poly{styrenesulfonicacid}]) (PEDOT:PSS) /Emitting Polymer/Metal. The emitting polymer layer comprised of the Poly[(9,9-dioctyl-2,7-divinylenefluorenylene)-alt-co-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] (PFO) and the metal layer of aluminum prepared with different Ar(+) ion energies varying in the range from 0 to 1000 eV. Photoluminescence, Current-Voltage and Electroluminescence measurements were used to study the emission and electron injection properties. Changes of these properties were related with the damage caused by the energetic ions and the metal penetration into the polymer. Computer simulations of hybrid interface damage and metal penetration were confronted with experimental data. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
While evidence of ion reduction at the cathode has been given, proof of anode activity, in order to account completely for the redox-type electrochemical mechanism so far postulated to originate the electric field-induced non-spontaneous crystallization observed in glasses, is still lacking. This study demonstrates that direct contact of both cathode and anode electrodes with the material is mandatory to promote crystal nucleation. The electrochemical process of concern is established here to involve a solid-state process, electrolytic in nature. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Three novel polymetallic ruthenium (III) meso-tetra(4-pyridyl)porphyrins containing peripheral ""RuCl(3)(dppb)"" moieties have been prepared and characterized. The X-ray structure of the tetraruthenated {NiTPyP[RuCl(3)(dppb)](4)} porphyrin complex crystallizes in the triclinic space group FT. This structure is discussed and compared with the crystal data for the mer-[RuCl(3)(dppb)(py)]. The {TPyP[RuCl(3)(dppb)](4)} and {CoTPyP[RuCl(3)(dppb)](4)} porphyrins were used to obtain electrogenerated films on ITO and glass carbon electrode surfaces, respectively. Such tetraruthenated porphyrins form films of a mixed-valence species {TPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2)(4n2+) and {CoTPyP[Ru(dppb)](4)(mu Cl(3))(2)}(2n)(4n2+) on the electrode surface. The modified electrode with {CoTPyP[RuCl(3)(dppb)](4)} is very stable and can be used to detect organic substrates such as catechol.
Resumo:
We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel Schiff base-copper(II) complex [Cu(2)L(2)(N(3))(2)](ClO(4))(2) 1, where L = (4-imidazolyl)ethylene-2-amino-1-ethylpyridine (apyhist), containing azide-bridges between adjacent copper ions in a dinuclear arrangement was isolated and characterized both in the solid state and in solution by X-ray crystallography and different spectroscopic techniques. Azide binding constants were estimated from titrations of the precursor [CuL(H(2)O)(2)](2+) solutions with sodium azide, giving rise to the azido-bridged species, [Cu(2)L(2)(N(3))(2)](2+). Raman spectra showed asymmetric stretching band at 2060 cm(-1), indicating the presence of azido ligands with a symmetric mu(1,) (1) binding geometry. EPA spectra, in frozen methanol/water solutions at 77 K, exhibited characteristic features of copper centers in tetragonal pyramidal coordination geometry, exhibiting magnetic interactions between them. Further, in solid state, two different values for magnetic coupling in this species were obtained, J/k = -(5.14 +/- 0.02) cm(-1) attributed to the mu(1, 1) azide-bridge mode, and J`z`/k = -(2.94 +/- 0.11) cm(-1) for the interaction between dinuclear moieties via water/perchorate bridges. Finally, an attempt was made to correlate structure and magnetic data for this dinuclear asymmetric end-on azido bridged-copper(II) 1 complex with those of another correlated dinuclear system, complex [Cu(2)L(2)Cl(2)](ClO(4))(2) 2, containing the same tridentate diimine ligand, but with chloro-bridged groups between the copper centres.
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.
Nitric oxide sensing by cytochrome c bonded to a conducting polymer modified glassy carbon electrode
Resumo:
A nitric oxide biosensor based on cytochrome c (an heme protein) covalently immobilized to poly(5-amino-1-naphthol) by using cyanuric chloride as a bridge was developed. The immobilization was studied by cyclic voltammetry and quartz crystal microbalance. The nitric oxide detection as a function of poly(5-amino-1-naphthol) amount was recorded, and the best result was obtained with the electrode prepared by 70 cycles. The sensitivity and detection limit were 0.015 mu A cm(-2)/mu mol L(-1) and 2.85 mu mol L(-1), respectively. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Hydrogen peroxide was determined in oral antiseptic and bleach samples using a flow-injection system with amperometric detection. A glassy carbon electrode modified by electrochemical deposition of ruthenium oxide hexacyanoferrate was used as working electrode and a homemade Ag/AgCl (saturated KCl) electrode and a platinum wire were used as reference and counter electrodes, respectively. The electrocatalytic reduction process allowed the determination of hydrogen peroxide at 0.0 V. A linear relationship between the cathodic peak current and concentration of hydrogen peroxide was obtained in the range 10-5000 mu mol L(-1) with detection and quantification limits of 1.7 (S/N = 3) and 5.9 (S/N = 10) mu mol L(-1), respectively. The repeatability of the method was evaluated using a 500 mu mol L(-1) hydrogen peroxide solution, the value obtained being 1.6% (n = 14). A sampling rate of 112 samples h(-1) was achieved at optimised conditions. The method was employed for the quantification of hydrogen peroxide in two commercial samples and the results were in agreement with those obtained by using a recommended procedure.
Resumo:
A new approach to fabricate a disposable electronic tongue is reported. The fabrication of the disposable sensor aimed the integration of all electrodes necessary for measurement in the same device. The disposable device was constructed with gold CD-R and copper sheets substrates and the sensing elements were gold, copper and a gold surface modified with a layer of Prussian Blue. The relative standard deviation for signals obtained from 20 different disposable gold and 10 different disposable copper electrodes was below 3.5%. The performance, electrode materials and the capability of the device to differentiate samples were evaluated for taste substances model, milk with different pasteurization processes (homogenized/pasteurized, ultra high temperature (UHT) pasteurized and UHT pasteurized with low fat content) and adulterated with hydrogen peroxide. In all analysed cases, a good separation between different samples was noticed in the score plots obtained from the principal component analysis (PCA). Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 mu mol L(-1) to 100 mu mol L(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 mu mol L(-1) (3 sigma). The anodic current peaks obtained after a series of 23 successive injections of 50 mu L of 25 mu mol L(-1) H(2)O(2) showed an RSD < 0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmol L(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed ampermetric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of glycine by doped nickel hydroxide modified electrodes and their use as sensors are described. The electrode modification was carried out by a simple electrochemical coprecipitation and its electrochemical properties were investigated. The modified electrode presented activity for glycine oxidation after applying a potential required to form NiOOH (similar to 0.45 V vs Ag/AgCl). In these conditions a sensitivity of 0.92 mu A mmol(-1) L and a linear response range from 0.1 up to 1.2 mmol L(-1) were achieved in the electrolytic Solutions at PH 12.6. Limits of detection and quantification were found to be 30 and 110 mu mol L(-1), respectively. Kinetic studies performed with rotating disk electrode (RDE) and by chronoamperometry allowed to determine the heterogeneous rate constant of 4.3 x 10(2) mol(-1) Ls(-1), Suggesting that NiOOH is a good electrocatalyst for glycine oxidation. NiOOH activity to oxidize other amino acids was also investigated, (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 mu mol L-1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 mu mol L-1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB-based amperometric sensors. The usefulness of the methodology was demonstrated by addition-recovery experiments with rainwater samples and values were in the 98.8 to 103% range.