856 resultados para EYE-MOVEMENTS
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
Ohio Department of Transportation, Columbus
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
The authors argue that human desire involves conscious cognition that has strong affective connotation and is potentially involved in the determination of appetitive behavior rather than being epiphenomenal to it. Intrusive thoughts about appetitive targets are triggered automatically by external or physiological cues and by cognitive associates. When intrusions elicit significant pleasure or relief, cognitive elaboration usually ensues. Elaboration competes with concurrent cognitive tasks through retrieval of target-related information and its retention in working memory. Sensory images are especially important products of intrusion and elaboration because they simulate the sensory and emotional qualities of target acquisition. Desire images are momentarily rewarding but amplify awareness of somatic and emotional deficits. Effects of desires on behavior are moderated by competing incentives, target availability, and skills. The theory provides a coherent account of existing data and suggests new directions for research and treatment.
Resumo:
Previous research in visual search indicates that animal fear-relevant deviants, snakes/spiders, are found faster among non fear-relevant backgrounds, flowers/mushrooms, than vice versa. Moreover, deviant absence was indicated faster among snakes/spiders and detection time for flower/mushroom deviants, but not for snake/spider deviants, increased in larger arrays. The current research indicates that the latter 2 results do not reflect on fear-relevance, but are found only with flower/mushroom controls. These findings may reflect on factors such as background homogeneity, deviant homogeneity, or background-deviant similarity. The current research removes contradictions between previous studies that used animal and social fear-relevant stimuli and indicates that apparent search advantages for fear-relevant deviants seem likely to reflect on delayed attentional disengagement from fear-relevance on control trials.
Resumo:
PURPOSE. To investigate the effect of age on optokinetic nystagmus (OKN) in response to stimuli designed to preferentially stimulate the M-pathway. METHOD. OKN was recorded in 10 younger (32.3 +/- 5.98 years) and 10 older (65.6 +/- 6.53) subjects with normal vision. Vertical gratings of 0.43 or 1.08 cpd drifting at 5 degrees/s or 20 degrees/s and presented at either 8% or 80% contrast were displayed on a large screen as full-field stimulation, central stimulation within a central Gaussian-blurred window of 15 diameter, or peripheral stimulation outside this window. All conditions apart from the high-contrast condition were presented in a random order at two light levels, mesopic (1.8 cdm(-2)) and photopic (71.5 cdm(-2)). RESULTS. Partial-field data indicated that central stimulation, mesopic light levels, and lower temporal frequency each significantly increased slow-phase velocity (SPV). Although there was no overall difference between groups for partial-field stimulation, full-field stimulation, or low-contrast stimulation, a change in illumination revealed a significant interaction with age: there was a larger decrease in SPV going from photopic to mesopic conditions for the older group than the younger group, especially for higher temporal frequency stimulation. CONCLUSIONS. OKN becomes reflexive in conditions conducive to M-pathway stimulation, and this rOKN response is significantly diminished in older healthy adults than in younger healthy adults, indicative of decreased M-pathway sensitivity.
Resumo:
The use of fixation points (FPs) in visual psychophysics is common practice, though the costs and benefits of different fixation regimens have not been compared. Here we investigate the influence of several different types of FP configurations on the contrast detection of patches of sine-wave gratings. We find that for small targets (1°), the addition of a superimposed central FP can increase thresholds by a factor of 1.3 (2.5 dB) in comparison with no FP, and a factor of 1.5 (3.6 dB) in comparison with FPs that surround the target. These results are consistent with (i) a suppressive influence on the central region of the target from a central FP, and (ii) facilitatory influences from surrounding FPs. Our analysis of the slope of the psychometric function suggests that the facilitatory influence is not due to reduction of uncertainty. Plausible candidate causes for the facilitation are: (i) sensory interactions, (ii) aids to ocular accommodation and convergence, (iii) a reduction in eye-movements and (iv) more accurate placement of the observer’s window of attention. Masking by a central FP is not found for the suprathreshold task of contrast discrimination, suggesting that the masking effects of pedestal and FP do not combine linearly. This means that estimates of the level of masking produced by a contrast pedestal can depend on the details of the fixation point.
Resumo:
When viewing a drifting plaid stimulus, perceived motion alternates over time between coherent pattern motion and a transparent impression of the two component gratings. It is known that changing the intrinsic attributes of such patterns (e.g. speed, orientation and spatial frequency of components) can influence percept predominance. Here, we investigate the contribution of extrinsic factors to perception; specifically contextual motion and eye movements. In the first experiment, the percept most similar to the speed and direction of surround motion increased in dominance, implying a tuned integration process. This shift primarily involved an increase in dominance durations of the consistent percept. The second experiment measured eye movements under similar conditions. Saccades were not associated with perceptual transitions, though blink rate increased around the time of a switch. This indicates that saccades do not cause switches, yet saccades in a congruent direction might help to prolong a percept because i) more saccades were directionally congruent with the currently reported percept than expected by chance, and ii) when observers were asked to make deliberate eye movements along one motion axis, this increased percept reports in that direction. Overall, we find evidence that perception of bistable motion can be modulated by information from spatially adjacent regions, and changes to the retinal image caused by blinks and saccades.
Resumo:
Autism is a pervasive developmental disorder and Asperger’s syndrome is part of the spectrum of autism disorders. This thesis aims to: • Review and investigate current theories concerning visual function in individuals with Asperger’s syndrome and high functioning autism spectrum disorder and to translate the findings into clinical practice by developing a specific protocol for the eye examination of individuals of this population. • Investigate whether those with Asperger’s syndrome are more likely to suffer from Meares-Irlen syndrome and/or dyslexia. • Assess the integrity of the M-cell pathway in Asperger’s syndrome using perimetric tests available in optometric practice to investigate and also to describe the nature of any defects. • Evaluate eye movement strategies in Asperger’s whilst viewing both text and images. Also to evaluate the most appropriate methodology for investigating eye movements; namely optical digital eye tracking and electrophysiology methodologies. Findings of the investigations include • Eye examinations for individuals with Asperger’s syndrome should contain the same testing methods as for the general population, with special consideration for clear communication. • There is a depression of M-pathway visual field sensitivity in 57% (8/14) of people with Asperger’s syndrome, supporting previous evidence for an M-cell deficit in some individuals. • There is a raised prevalence of dyslexia in Asperger’s syndrome (26% of a sample of 31) but not necessarily of Meares-Irlen syndrome. • Gaze strategies are abnormal in Asperger’s syndrome, for both reading and viewing of images. With increased saccadic movement and decreased viewing of faces in comparison to background detail.
Resumo:
It has long been sought to measure ocular accommodation continuously in human factor applications such as driving or flying. Open-field autorefractors such as the Canon R-1 could be converted to allow continuous, objective recording, but steady eye fixation and head immobilisation were essential for the measurements to be valid. Image analysis techniques utilised by newer open-view autorefractors such as the Shin-Nippon SRW-5000 are more tolerant to head and eye movements, but perhaps the technique with the greatest potential for the measurement of accommodation in human factor applications is photoretinoscopy. This paper examines the development of techniques for high temporal measurements of accommodation and reports on the tolerance of one such recent commercial instrument, the PowerRefractor (PlusOptiX). The instrument was found to be tolerant to eye movements from the optical axis of the instrument (∼0.50 DS change in apparent accommodation with gaze 25° eccentric to the optical axis), longitudinal head movement (<0.25 DS from 8 cm towards and 20 cm away from the correct photorefractor to eye distance) and changes in background illuminance (<0.25 DS from 0.5 to 20 cd m-2 target luminance). The PowerRefractor also quantifies the direction of gaze and pupil size, but is unable to take measurements with small pupils <3.7 ±1.0 mm. © 2002 The College of Optometrists.
Resumo:
The need to measure the response of the oculomotor system, such as ocular accommodation, accurately and in real-world environments is essential. New instruments have been developed over the past 50 years to measure eye focus including the extensively utilised and well validated Canon R-1, but in general these have had limitations such as a closed field-of-view, a poor temporal resolution and the need for extensive instrumentation bulk preventing naturalistic performance of environmental tasks. The use of photoretinoscopy and more specifically the PowerRefractor was examined in this regard due to its remote nature, binocular measurement of accommodation, eye movement and pupil size and its open field-of-view. The accuracy of the PowerRefractor to measure refractive error was on averaging similar, but more variable than subjective refraction and previously validated instrumentation. The PowerRefractor was found to be tolerant to eye movements away from the visual axis, but could not function with small pupil sizes in brighter illumination. The PowerRefractor underestimated the lead of accommodation and overestimated the slope of the accommodation stimulus response curve. The PowerRefractor and the SRW-5000 were used to measure the oculomotor responses in a variety of real-world environment: spectacles compared to single vision contract lenses; the use of multifocal contact lenses by pre-presbyopes (relevant to studies on myopia retardation); and ‘accommodating’ intraocular lenses. Due to the accuracy concerns with the PowerRefractor, a purpose-built photoretinoscope was designed to measure the oculomotor response to a monocular head-mounted display. In conclusion, this thesis has shown the ability of photoretinoscopy to quantify changes in the oculomotor system. However there are some major limitations to the PowerRefractor, such as the need for individual calibration for accurate measures of accommodation and vergence, and the relatively large pupil size necessary for measurement.
Resumo:
A large negative spike potential, which is closely related to the onset of saccadic eyemovements, can be recorded from electrodes adjacent to the orbits. This potential, thepresaccadic spike potential, has often been regarded as an artefact related to eyemovement recordings and little work has been performed to establish its normal waveformand parameters. A positive spike potential, exactly coincident with the frontal negativespike, has also been recorded from electrodes positioned over the posterior scalp andthere has been some debate regarding any possible relationship between the twopotentials. The frontal spike potential has been associated with motor unit activity in theextraocular muscles prior to the saccade. This thesis investigates both the large anteriorand smaller posterior spike potentials and relates these recordings to the saccadic eyemovements associated with them. The anterior spike potential has been recorded from normal subjects to ascertain its normallatency and amplitude parameters for both horizontal and vertical saccades. A relationshipbetween saccade size and spike potential amplitude is described, the spike potentialamplitude reducing with smaller saccades. The potential amplitude also reduces withadvancing age. Studying the topographical distribution of the spike potential across thescalp shows the posterior spike activity may arise from potential spread of the larger frontalspike potential. Spike potential recordings from subjects with anomalous eye movements further implicate the extraocular muscles and their innervation in the generation of the spike potential. These recordings indicate that the spike potential may have some use as a clinical recording from patients with disease conditions affecting either their extraocular muscles or the innervational pathways to these muscles. Further recordings of the potential are necessary, however, to determine the exact nature of the changes which may occur with such conditions.
Resumo:
Preface. The evolution of cognitive neuroscience has been spurred by the development of increasingly sophisticated investigative techniques to study human cognition. In Methods in Mind, experts examine the wide variety of tools available to cognitive neuroscientists, paying particular attention to the ways in which different methods can be integrated to strengthen empirical findings and how innovative uses for established techniques can be developed. The book will be a uniquely valuable resource for the researcher seeking to expand his or her repertoire of investigative techniques. Each chapter explores a different approach. These include transcranial magnetic stimulation, cognitive neuropsychiatry, lesion studies in nonhuman primates, computational modeling, psychophysiology, single neurons and primate behavior, grid computing, eye movements, fMRI, electroencephalography, imaging genetics, magnetoencephalography, neuropharmacology, and neuroendocrinology. As mandated, authors focus on convergence and innovation in their fields; chapters highlight such cross-method innovations as the use of the fMRI signal to constrain magnetoencephalography, the use of electroencephalography (EEG) to guide rapid transcranial magnetic stimulation at a specific frequency, and the successful integration of neuroimaging and genetic analysis. Computational approaches depend on increased computing power, and one chapter describes the use of distributed or grid computing to analyze massive datasets in cyberspace. Each chapter author is a leading authority in the technique discussed.