939 resultados para EQUAÇÕES DIFERENCIAIS PARCIAIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matemática Universitária - IGCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we present two studies, the first one completed and the second one in development, which are based in teaching approaches that propose the qualitative study of mathematical models as a strategy for the teaching and learning of mathematical concepts. These teaching approaches focus on subjects from Higher Education such as Introduction to Ordinary Differential Equations and Topics of Differential and Integral Calculus. We denominate this common aspect of the teaching approaches as Model Analysis and in a preliminary level we relate it with Mathematical Modeling. Furthermore, we discuss some questions related with the choice of the theme and the role of Digital Technologies when Model Analysis is applied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O Teorema de Poincaré-Bendixson é um resultado muito importante no estudo de Sistemas Dinâmicos, pois ele estabelece para quais tipos de conjunto limite as trajetórias de um campo de vetores em IR2 deve convergir. Neste trabalho vamos abordar a Funç˜ao do primeiro Retorno de Poincaré, além de discutir a estabilidade de Ciclos Limites e provar o Teorema de Poincaré-Bendixson.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We prove a uniqueness result related to the Germain–Lagrange dynamic plate differential equation. We consider the equation {∂2u∂t2+△2u=g⊗f,in ]0,+∞)×R2,u(0)=0,∂u∂t(0)=0, where uu stands for the transverse displacement, ff is a distribution compactly supported in space, and g∈Lloc1([0,+∞)) is a function of time such that g(0)≠0g(0)≠0 and there is a T0>0T0>0 such that g∈C1[0,T0[g∈C1[0,T0[. We prove that the knowledge of uu over an arbitrary open set of the plate for any interval of time ]0,T[]0,T[, 0

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho é proposto um modelo mecanobiológico de remodelagem óssea para a estimativa de variações, provocadas por perturbações mecânicas ou biológicas, na matriz de rigidez estrutural da escala macroscópica e na densidade mineral em uma região do osso. Na cooperação entre as áreas da saúde e da engenharia, como nos estudos estruturais de biomecânica no sistema esquelético, as propriedades mecânicas dos materiais devem ser conhecidas, entretanto os ossos possuem uma constituição material altamente complexa, dinâmica e variante entre indivíduos. Sua dinâmica decorre dos ciclos de absorção e deposição de matriz óssea na remodelagem óssea, a qual ocorre para manter a integridade estrutural do esqueleto e adaptá-lo aos estímulos do ambiente, sejam eles biológicos, químicos ou mecânicos. Como a remodelagem óssea pode provocar alterações no material do osso, espera-se que suas propriedades mecânicas também sejam alteradas. Na literatura científica há modelos matemáticos que preveem a variação da matriz de rigidez estrutural a partir do estímulo mecânico, porém somente os modelos mais recentes incluíram explicitamente processos biológicos e químicos da remodelagem óssea. A densidade mineral óssea é um importante parâmetro utilizado no diagnóstico de doenças ósseas na área médica. Desse modo, para a obtenção da variação da rigidez estrutural e da densidade mineral óssea, propõe-se um modelo numérico mecanobiológico composto por cinco submodelos: da dinâmica da população de células ósseas, da resposta das células ao estímulo mecânico, da porosidade óssea, da densidade mineral óssea e, baseado na Lei de Voigt para materiais compósitos, da rigidez estrutural. Os valores das constantes das equações dos submodelos foram obtidos de literatura. Para a solução das equações do modelo, propõe-se uma implementação numérica e computacional escrita em linguagem C. O método de Runge-Kutta-Dorman-Prince, cuja vantagem consiste no uso de um passo de solução variável, é utilizado no modelo para controlar o erro numérico do resultado do sistema de equações diferenciais. Foi realizada uma avaliação comparativa entre os resultados obtidos com o modelo proposto e os da literatura dos modelos de remodelagem óssea recentes. Conclui-se que o modelo e a implementação propostos são capazes de obter variações da matriz de rigidez estrutural macroscópica e da densidade mineral óssea decorrentes da perturbação nos parâmetros mecânicos ou biológicos do processo de remodelagem óssea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo da solidificação de metais puros utilizando o modelo de campo de fases. O modelo é utilizado para simular a solidificação com o intuito de obter a morfologia da interface sólido-líquido sob diversas condições de transferência de calor. Foram realizados testes de validação comparando as morfologias da interface sólido-líquido obtida com as morfologias apresentadas em trabalhos anteriores para os casos bi e tridimensionais. O modelo do campo de fases adotado consiste principalmente de duas equações diferenciais: uma para calcular a variável de campo de fases e outra para calcular o campo de temperaturas. As equações foram solucionadas numericamente para um oitavo do domínio devido a simetria do problema. Os cálculos do modelo indicam que um sólido esférico com um raio inicial menor que o raio crítico de nucleação refunde. Entretanto uma esfera de raio maior cresce. Quando o sólido inicial cresce em uma malha numérica relativamente grosseira, a forma do sólido desvia da forma esférica devido perturbações na interface sólido-líquido. Quando a malha é refinada, as perturbações não são detectadas; contudo, quando introduzidas artificialmente as perturbações crescem e distorcem o formato esférico.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mudança climática é um processo global, real e inequívoco. Para sua mitigação, a substituição de combustíveis fósseis por energias renováveis está sendo cada vez mais empregada. Devido à rápida velocidade de crescimento das microalgas, seu cultivo é visto como uma das alternativas mais promissoras para a produção de biocombustíveis. No presente trabalho, foi elaborado um modelo matemático fenomenológico que descreve o crescimento da microalga Chlorella vulgaris. Este modelo foi validado através de experimentos realizados em um reator piloto com capacidade de 1000 L tipo \"open pond\" (reator de raias) aberto ao ambiente, em condições não-axênicas. A variação de concentração devida à evaporação e/ou adição de água foi levada em conta no modelo. O modelo matemático desenvolvido, contendo dois parâmetros ajustáveis, descreve a variação da concentração de biomassa em função do tempo sob condições variáveis de luminosidade e temperatura. Os parâmetros ajustáveis são q (constante para conversão de intensidade luminosa em crescimento fotossintético, em klux-1 min-1) e Imax (limite máximo de intensidade luminosa, em klux). Previamente ao projeto do reator, foram realizados experimentos em reator de laboratório (utilizando a metodologia Taguchi) com o objetivo de determinar quais os fatores mais críticos para o crescimento da espécie de microalga selecionada e que, por isso, deveriam ser controlados com maior precisão. Além disso, foi analisada teoricamente a relevância da consideração do transporte de massa de CO2 no processo. Como este transporte é muito mais lento, a resistência controladora do processo é o crescimento fotossintético. Após a construção do reator piloto, foram realizados dois experimentos preliminares (os quais serviram para aperfeiçoar o aparato e o procedimento experimental) e três experimentos definitivos, registrando-se dados ambientais (temperatura, intensidade luminosa e pH) e de concentração ao longo do tempo. Utilizando os dados de temperatura e luminosidade em função do tempo como entrada, os parâmetros q e Imax otimizados foram ajustados às curvas de concentração versus tempo de cada experimento. Para tal foram desenvolvidos programas de integração de equações diferenciais e de otimização escritos em ambiente Scilab®. Verificou-se que, apesar da variabilidade devida às condições ambientais dos experimentos, obteve-se boa aderência dos dados simulados aos experimentais. Uma análise estatística dos parâmetros q e Imax calculados em cada experimento forneceu coeficientes de variação para estes parâmetros de 17 % e 5 %, respectivamente. Concluiu-se, portanto, que o modelo matemático desenvolvido neste trabalho pode ser empregado para prever o desempenho de um reator de raias em condições ambientais variáveis, bastando para isto o ajuste de dois parâmetros.