969 resultados para EPSILON-CAPROLACTAM
Resumo:
Maximally effective concentrations of endothelin-1 (ET-1), acidic FGF (aFGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA) activated mitogen-activated protein kinase (MAPK) by 3-4-fold in crude extracts of myocytes cultured from neonatal rat heart ventricles. Maximal activation was achieved after 5 min. Thereafter, MAPK activity stimulated by ET-1 or aFGF declined to control values within 1-2 h, whereas activation by TPA was more sustained. Two peaks of MAPK activity (a 42- and a 44-kDa MAPK) were resolved in cells exposed to ET-1 or aFGF by fast protein liquid chromatography on a Mono Q column. One major and one minor peak of MAPK kinase (MAPKK) was stimulated by ET-1 or aFGF. Cardiac myocytes expressed protein kinase C (PKC)-alpha, -delta, -epsilon and -zeta as shown immunoblotting. Exposure to 1 microM TPA for 24 h down-regulated PKC-alpha, -delta, and -epsilon, but not PKC-zeta. This maneuver wholly abolished the activation of MAPK on re-exposure to TPA but did not affect the response to aFGF. The effect of ET-1 was partially down-regulated. ET-1 stimulated phospho[3H]inositide hydrolysis 18-fold, whereas aFGF stimulated by only 30%. Agonists which initially utilize dissimilar signaling pathways may therefore converge at the level of MAPKK/MAPK and this may be relevant to the hypertrophic response of the heart.
Resumo:
The translocation of protein kinase C (PKC) isoforms PKC-alpha, PKC-delta, PKC-epsilon, and PKC-zeta from soluble to particulate fractions was studied in ventricular cardiomyocytes cultured from neonatal rats. Endothelin-1 (ET-1) caused a rapid ETA receptor-mediated translocation of PKC-delta and PKC-epsilon (complete in 0.5-1 min). By 3-5 min, both isoforms were returning to the soluble fraction, but a greater proportion of PKC-epsilon remained associated with the particulate fraction. The EC50 of translocation for PKC-delta was 11-15 nM ET-1 whereas that for PKC-epsilon was 1.4-1.7 nM. Phenylephrine caused a rapid translocation of PKC-epsilon (EC50 = 0.9 microM) but the proportion lost from the soluble fraction was less than with ET-1. Translocation of PKC-delta was barely detectable with phenylephrine. Neither agonist caused any consistent translocation of PKC-alpha or PKC-zeta. Activation of p42 and p44 mitogen-activated protein kinase (MAPK) by ET-1 or phenylephrine followed more slowly (complete in 3-5 min). Phosphorylation of p42-MAPK occurred simultaneously with its activation. The proportion of the total p42-MAPK pool phosphorylated in response to ET-1 (50%) was greater than with phenylephrine (20%). In addition to activation of MAPK, an unidentified p85 protein kinase was activated by ET-1 in the soluble fraction whereas an unidentified p58 protein kinase was activated in the particulate fraction.
Resumo:
The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.
Resumo:
In ventricular myocytes cultured from neonatal rat hearts, bradykinin (BK), kallidin or BK(1-8) [(Des-Arg9)BK] stimulated PtdinsP2 hydrolysis by 3-4-fold. EC50 values were 6 nM (BK), 2 nM (kallidin), and 14 microM [BK(1-8)]. BK or kallidin stimulated the rapid (less than 30 s) translocation of more than 80% of the novel protein kinase C (PKC) isoforms nPKC-delta and nPKC-epsilon from the soluble to the particulate fraction. EC50 values for nPKC-delta translocation by BK or kallidin were 10 and 2 nM respectively. EC50 values for nPKC-epsilon translocation by BK or kallidin were 2 and 0.6 nM respectively. EC50 values for the translocation of nPKC-delta and nPKC-epsilon by BK(1-8) were more than 5 microM. The classical PKC, cPKC-alpha, and the atypical PKC, nPKC-zeta, did not translocate. BK caused activation and phosphorylation of p42-mitogen-activated protein kinase (MAPK) (maximal at 3-5 min, 30-35% of p42-MAPK phosphorylated). p44-MAPK was similarly activated. EC50 values for p42/p44-MAPK activation by BK were less than 1 nM whereas values for BK(1-8) were more than 10 microM. The order of potency [BK approximately equal to kallidin > BK (1-8)] for the stimulation of PtdInsP2 hydrolysis, nPKC-delta and nPKC-epsilon translocation, and p42/p44-MAPK activities suggests involvement of the B2 BK receptor subtype. In addition, stimulation of all three processes by BK was inhibited by the B2BK receptor-selective antagonist HOE140 but not by the B1-selective antagonist Leu8BK(1-8). Exposure of cells to phorbol 12-myristate 13-acetate for 24 h inhibited subsequent activation of p42/p44-MAPK by BK suggesting participation of nPKC (and possibly cPKC) isoforms in the activation process. Thus, like hypertrophic agents such as endothelin-1 (ET-1) and phenylephrine (PE), BK activates PtdInsP2 hydrolysis, translocates nPKC-delta, and nPKC-epsilon, and activates p42/p44-MAPK. However, in comparison with ET-1 and PE, BK was only weakly hypertrophic as assessed by cell morphology and patterns of gene expression. This difference could not be attributed to dissimilarities between the duration of activation of p42/p44-MAPK by BK or ET-1. Thus activation of these signalling pathways alone may be insufficient to induce a powerful hypertrophic response.
Resumo:
The physiological activator of protein kinase C (PKC), diacylglycerol, is formed by hydrolysis of phosphoinositides (PI) by phospholipase C (PLC) or phosphatidylcholine by phospholipase D (PLD). We have measured activation of these phospholipases by endothelin-1 (ET-1), bradykinin (BK), or phenylephrine (PE) in ventricular myocytes cultured from neonatal rat. The stimulation of PI hydrolysis after 10 min by 0.1 microM ET-1 (about 12-fold) was much greater than for BK or PE (each about four-fold), and did not correlate with translocation of nPKC delta or nPKC epsilon (Clerk A. Bogoyevitch MA. Andersson MB. Sugden PH, 1994. J Biol Chem 269: 32848-32857: Clerk A, Gillespie-Brown J, Fuller SJ, Sugden PH, 1996. Biochem J 317: 109-118). However, ET-1 and BK stimulated a similar rapid increase in [3H]InsP, formation (< 30 s), which was much greater than that seen with PE. This early phase correlated with PKC translocation. Acute or chronic exposure to 12-O-tetradecanoylphorbol-13-acetate (TPA) or treatment with Ro-31-8220 showed that the stimulation of PI hydrolysis by PE, but not ET-1 or BK, was inhibited by activation of PKC. Furthermore, ET-1 and BK heterologously desensitized the stimulation of PI hydrolysis by PE, ET-1 or BK homologously uncoupled their own receptors from [3H]InsP3 formation, but there was no evidence of heterologous desensitization with these two agonists. Anomalously, chronic exposure to TPA increased the stimulation of PI hydrolysis by BK, but this probably resulted from an increase in BK receptor density. PLD was also rapidly activated by TPA. ET-1, BK or PE. Experiments with Ro-31-8220 showed that the stimulation of PLD by ET-1 and BK was mediated through activation of PKC. We discuss the characteristics of the activation of PI hydrolysis and PLD by ET-1, BK, and PE with respect to the translocation of PKC.
Resumo:
A conscious rabbit model was used to study the effect of ischemic preconditioning (PC) on stress-activated kinases [c-Jun NH(2)-terminal kinases (JNKs) and p38 mitogen-activated protein kinase (MAPK)] in an environment free of surgical trauma and attending external stress. Ischemic PC (6 cycles of 4-min ischemia/4-min reperfusion) induced significant activation of protein kinase C (PKC)-epsilon in the particulate fraction, which was associated with activation of p46 JNK in the nuclear fraction and p54 JNK in the cytosolic fraction; all of these changes were completely abolised by the PKC inhibitor chelerythrine. Selective enhancement of PKC-epsilon activity in adult rabbit cardiac myocytes resulted in enhanced activity of p46/p54 JNKs, providing direct in vitro evidence that PKC-epsilon is coupled to both kinases. Studies in rabbits showed that the activation of p46 JNK occurred during ischemia, whereas that of p54 JNK occurred after reperfusion. A single 4-min period of ischemia induced a robust activation of the p38 MAPK cascade, which, however, was attenuated after 5 min of reperfusion and disappeared after six cycles of 4-min ischemia/reperfusion. Overexpression of PKC-epsilon in cardiac myocytes failed to increase the p38 MAPK activity. These results demonstrate that ischemic PC activates p46 and p54 JNKs via a PKC-epsilon-dependent signaling pathway and that there are important differences between p46 and p54 JNKs with respect to the subcellular compartment (cytosolic vs. nuclear) and the mechanism (ischemia vs. reperfusion) of their activation after ischemic PC.
Resumo:
The effects of iron ions on dielectric properties of lithium sodium phosphate glasses were studied by non-usual, fast and non-destructive microwave techniques. The dielectric constant (epsilon`). insertion loss (L) and microwave absorption spectra (microwave response) of the selected glass system xFe(2)O(3)center dot(1 - x)(50P(2)O5 center dot 25Li(2)O center dot 25Na(2)O), being x = 0, 3, 6, ....,15 expressed in mol.%, were investigated. The dielectric constant of the samples was investigated at 9.00 GHz using the shorted-line method (SLM) giving the minimum value of epsilon` = 2.10 +/- 0.02 at room temperature, and increasing further with x, following a given law. It was observed a gradual increasing slope Of E in the temperature range of 25 <= t <= 330 degrees C, at the frequency of 9.00 GHz. Insertion loss (measured at 9.00 GHz) and measurements of microwave energy attenuation, at frequencies ranging from 8.00 to 12.00 GHz were also studied as a function of iron content in the glass samples. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Resonant interactions among equatorial waves in the presence of a diurnally varying heat source are studied in the context of the diabatic version of the equatorial beta-plane primitive equations for a motionless, hydrostatic, horizontally homogeneous and stably stratified background atmosphere. The heat source is assumed to be periodic in time and of small amplitude [i.e., O(epsilon)] and is prescribed to roughly represent the typical heating associated with deep convection in the tropical atmosphere. In this context, using the asymptotic method of multiple time scales, the free linear Rossby, Kelvin, mixed Rossby-gravity, and inertio-gravity waves, as well as their vertical structures, are obtained as leading-order solutions. These waves are shown to interact resonantly in a triad configuration at the O(e) approximation, and the dynamics of these interactions have been studied in the presence of the forcing. It is shown that for the planetary-scale wave resonant triads composed of two first baroclinic equatorially trapped waves and one barotropic Rossby mode, the spectrum of the thermal forcing is such that only one of the triad components is resonant with the heat source. As a result, to illustrate the role of the diurnal forcing in these interactions in a simplified fashion, two kinds of triads have been analyzed. The first one refers to triads composed of a k = 0 first baroclinic geostrophic mode, which is resonant with the stationary component of the diurnal heat source, and two dispersive modes, namely, a mixed Rossby-gravity wave and a barotropic Rossby mode. The other class corresponds to triads composed of two first baroclinic inertio-gravity waves in which the highest-frequency wave resonates with a transient harmonic of the forcing. The integration of the asymptotic reduced equations for these selected resonant triads shows that the stationary component of the diurnal heat source acts as an ""accelerator"" for the energy exchanges between the two dispersive waves through the excitation of the catalyst geostrophic mode. On the other hand, since in the second class of triads the mode that resonates with the forcing is the most energetically active member because of the energy constraints imposed by the triad dynamics, the results show that the convective forcing in this case is responsible for a longer time scale modulation in the resonant interactions, generating a period doubling in the energy exchanges. The results suggest that the diurnal variation of tropical convection might play an important role in generating low-frequency fluctuations in the atmospheric circulation through resonant nonlinear interactions.
Resumo:
Weakly nonlinear interactions among equatorial waves have been explored in this paper using the adiabatic version of the equatorial beta-plane primitive equations in isobaric coordinates. Assuming rigid lid vertical boundary conditions, the conditions imposed at the surface and at the top of the troposphere were expanded in a Taylor series around two isobaric surfaces in an approach similar to that used in the theory of surface-gravity waves in deep water and capillary-gravity waves. By adopting the asymptotic method of multiple time scales, the equatorial Rossby, mixed Rossby-gravity, inertio-gravity, and Kelvin waves, as well as their vertical structures, were obtained as leading-order solutions. These waves were shown to interact resonantly in a triad configuration at the O(epsilon) approximation. The resonant triads whose wave components satisfy a resonance condition for their vertical structures were found to have the most significant interactions, although this condition is not excluding, unlike the resonant conditions for the zonal wavenumbers and meridional modes. Thus, the analysis has focused on such resonant triads. In general, it was found that for these resonant triads satisfying the resonance condition in the vertical direction, the wave with the highest absolute frequency always acts as an energy source (or sink) for the remaining triad components, as usually occurs in several other physical problems in fluid dynamics. In addition, the zonally symmetric geostrophic modes act as catalyst modes for the energy exchanges between two dispersive waves in a resonant triad. The integration of the reduced asymptotic equations for a single resonant triad shows that, for the initial mode amplitudes characterizing realistic magnitudes of atmospheric flow perturbations, the modes in general exchange energy on low-frequency (intraseasonal and/or even longer) time scales, with the interaction period being dependent upon the initial mode amplitudes. Potential future applications of the present theory to the real atmosphere with the inclusion of diabatic forcing, dissipation, and a more realistic background state are also discussed.
Resumo:
The viability of two different classes of Lambda(t)CDM cosmologies is tested by using the APM 08279+5255, an old quasar at redshift z = 3.91. In the first class of models, the cosmological term scales as Lambda(t) similar to R(-n). The particular case n = 0 describes the standard Lambda CDM model whereas n = 2 stands for the Chen and Wu model. For an estimated age of 2 Gyr, it is found that the power index has a lower limit n > 0.21, whereas for 3 Gyr the limit is n > 0.6. Since n can not be so large as similar to 0.81, the Lambda CDM and Chen and Wu models are also ruled out by this analysis. The second class of models is the one recently proposed by Wang and Meng which describes several Lambda(t)CDM cosmologies discussed in the literature. By assuming that the true age is 2 Gyr it is found that the epsilon parameter satisfies the lower bound epsilon > 0.11 while for 3 Gyr, a lower limit of epsilon > 0.52 is obtained. Such limits are slightly modified when the baryonic component is included.
Resumo:
Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3 beta and eIF2B epsilon mRNA levels and Akt, GSK-3 beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.
Resumo:
The presence of the, 4 allele of apolipoprotein E (APOE) is considered a risk factor for sporadic Alzheimer`s disease (AD). Our recent data demonstrated that the systemic modulation of oxidative stress in platelets and erythrocytes is disrupted in aging and AD. In this study, the relationship between APOE genotype and oxidative stress markers, both in AD patients and controls, was evaluated. The AD group showed an increase in the content of thiobarbituric acid-reactive substances (TBARS) and in the activities of nitric oxide synthase (NOS) and Na, K-ATPase, when compared to controls. Both groups had a similar cGMP content and superoxide dismutase activity. APOE epsilon 4 allele carriers showed higher NOS activity than non-carriers. These results suggest a possible influence of APOE genotype on nitric oxide (NO) production that might enhance the effects of age-related specific factor(s) associated with neurodegenerative disorders. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) was originally described as a neuropeptide-metabolizing enzyme, highly expressed in the brain, kidneys and neuroendocrine tissue. EP24.15 lacks a typical signal peptide sequence for entry into the secretory pathway and is secreted by cells via an unconventional and unknown mechanism. In this study, we identified a novel calcium-dependent interaction between EP24.15 and calmodulin, which is important for the stimulated, but not constitutive, secretion of EP24.15. We demonstrated that, in vitro, EP24.15 and calmodulin physically interact only in the presence of Ca(2+), with an estimated K(d) value of 0.52 mu m. Confocal microscopy confirmed that EP24.15 colocalizes with calmodulin in the cytosol of resting HEK293 cells. This colocalization markedly increases when cells are treated with either the calcium ionophore A23187 or the protein kinase A activator forskolin. Overexpression of calmodulin in HEK293 cells is sufficient to greatly increase the A23187-stimulated secretion of EP24.15, which can be inhibited by the calmodulin inhibitor calmidazolium. The specific inhibition of protein kinase A with KT5720 reduces the A23187-stimulated secretion of EP24.15 and inhibits the synergistic effects of forskolin with A23187. Treatment with calmidazolium and KT5720 nearly abolishes the stimulatory effects of A23187 on EP24.15 secretion. Together, these data suggest that the interaction between EP24.15 and calmodulin is regulated within cells and is important for the stimulated secretion of EP24.15 from HEK293 cells.
Resumo:
Aims: Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent. Methods and Results: About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx(1), stx(2), eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)-PCR was performed to investigate the variants of stx(1) and stx(2), and the flagellar antigen (fliC) genes in nonmotile isolates. Five isolates were eae(+) and stx(-), and belonged to serotypes O128:H2/beta-intimin (2), O145:H2/gamma, O153:H7/beta and O178:H7/epsilon. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx(1c)stx(2d-O118) (46.9%), stx(1c) (27.2%), stx(2d-O118) (23.4%), and stx(1c)stx(2dOX3a) (2.5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates. Conclusions: This study demonstrated that healthy sheep in Sao Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC. Significance and Impact of the Study: As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.
Resumo:
Glycosylation of the Ab molecule is essential for maintaining the functional structure of Fc region and consequently for Ab-mediated effector functions, such as binding to cells or complement system activation. Alterations in the composition of the sugar moiety can dramatically influence Ab activity; however, it is not completely clear how differences in the N-linked oligosaccharide structure impact the biological function of Abs. We have described that murine IgG1 Abs can be separated according to their ability to elicit in vivo anaphylaxis in a fraction of anaphylactic and other of non-anaphylactic molecules. Furthermore, we showed that the N-linked oligosaccharide chain is essential for the structural conformation of the anaphylactic IgG1, the binding to Fc gamma RIII on mast cells, and, consequently, for the ability to mediate anaphylactic reactions. In this study, we evaluated the contribution of individual sugar residues to this biological function. Differences in the glycan composition were observed when we analyzed oligosaccharide chains from anaphylactic or non-anaphylactic IgG1, mainly the presence of more sialic acid and fucose residues in anaphylactic molecules. Interestingly, the enzymatic removal of terminal sialic acid residues in anaphylactic IgG1 resulted in loss of the ability to trigger mast cell degranulation and in vivo anaphylactic reaction, similarly to the deglycosylated IgG1 Ab. In contrast, fucose removal did not affect the anaphylactic function. Therefore, we demonstrated that the ability of murine IgG1 Abs to mediate anaphylaxis is directly dependent on the amount of sialic acid residues associated to the oligosaccharide chain attached to the Fc region of these molecules. The Journal of Immunology, 2008, 181: 8308-8314.