932 resultados para Document Segmentation
Resumo:
Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.
Resumo:
Peer-reviewed
A new approach to segmentation based on fusing circumscribed contours, region growing and clustering
Resumo:
One of the major problems in machine vision is the segmentation of images of natural scenes. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. The main contours of the scene are detected and used to guide the posterior region growing process. The algorithm places a number of seeds at both sides of a contour allowing stating a set of concurrent growing processes. A previous analysis of the seeds permits to adjust the homogeneity criterion to the regions's characteristics. A new homogeneity criterion based on clustering analysis and convex hull construction is proposed
Resumo:
In this paper a colour texture segmentation method, which unifies region and boundary information, is proposed. The algorithm uses a coarse detection of the perceptual (colour and texture) edges of the image to adequately place and initialise a set of active regions. Colour texture of regions is modelled by the conjunction of non-parametric techniques of kernel density estimation (which allow to estimate the colour behaviour) and classical co-occurrence matrix based texture features. Therefore, region information is defined and accurate boundary information can be extracted to guide the segmentation process. Regions concurrently compete for the image pixels in order to segment the whole image taking both information sources into account. Furthermore, experimental results are shown which prove the performance of the proposed method
Resumo:
An unsupervised approach to image segmentation which fuses region and boundary information is presented. The proposed approach takes advantage of the combined use of 3 different strategies: the guidance of seed placement, the control of decision criterion, and the boundary refinement. The new algorithm uses the boundary information to initialize a set of active regions which compete for the pixels in order to segment the whole image. The method is implemented on a multiresolution representation which ensures noise robustness as well as computation efficiency. The accuracy of the segmentation results has been proven through an objective comparative evaluation of the method
Resumo:
Colorectal cancer (CRC) is the third most common cancer and the fourth leading cause of cancer death worldwide. About 85% of the cases of CRC are known to have chromosomal instability, an allelic imbalance at several chromosomal loci, and chromosome amplification and translocation. The aim of this study is to determine the recurrent copy number variant (CNV) regions present in stage II of CRC through whole exome sequencing, a rapidly developing targeted next-generation sequencing (NGS) technology that provides an accurate alternative approach for accessing genomic variations. 42 normal-tumor paired samples were sequenced by Illumina Genome Analyzer. Data was analyzed with Varscan2 and segmentation was performed with R package R-GADA. Summary of the segments across all samples was performed and the result was overlapped with DEG data of the same samples from a previous study in the group1. Major and more recurrent segments of CNV were: gain of chromosome 7pq(13%), 13q(31%) and 20q(75%) and loss of 8p(25%), 17p(23%), and 18pq(27%). This results are coincident with the known literature of CNV in CRC or other cancers, but our methodology should be validated by array comparative genomic hybridisation (aCGH) profiling, which is currently the gold standard for genetic diagnosis of CNV.
Resumo:
In image processing, segmentation algorithms constitute one of the main focuses of research. In this paper, new image segmentation algorithms based on a hard version of the information bottleneck method are presented. The objective of this method is to extract a compact representation of a variable, considered the input, with minimal loss of mutual information with respect to another variable, considered the output. First, we introduce a split-and-merge algorithm based on the definition of an information channel between a set of regions (input) of the image and the intensity histogram bins (output). From this channel, the maximization of the mutual information gain is used to optimize the image partitioning. Then, the merging process of the regions obtained in the previous phase is carried out by minimizing the loss of mutual information. From the inversion of the above channel, we also present a new histogram clustering algorithm based on the minimization of the mutual information loss, where now the input variable represents the histogram bins and the output is given by the set of regions obtained from the above split-and-merge algorithm. Finally, we introduce two new clustering algorithms which show how the information bottleneck method can be applied to the registration channel obtained when two multimodal images are correctly aligned. Different experiments on 2-D and 3-D images show the behavior of the proposed algorithms
Resumo:
In this work we study the classification of forest types using mathematics based image analysis on satellite data. We are interested in improving classification of forest segments when a combination of information from two or more different satellites is used. The experimental part is based on real satellite data originating from Canada. This thesis gives summary of the mathematics basics of the image analysis and supervised learning , methods that are used in the classification algorithm. Three data sets and four feature sets were investigated in this thesis. The considered feature sets were 1) histograms (quantiles) 2) variance 3) skewness and 4) kurtosis. Good overall performances were achieved when a combination of ASTERBAND and RADARSAT2 data sets was used.
Resumo:
Some bilingual societies exhibit a distribution of language skills that can- not be explained by economic theories that portray languages as pure commu- nication devices. Such distribution of skills are typically the result of public policies that promote bilingualism among members of both speech commu- nities (reciprocal bilingualism). In this paper I argue that these policies are likely to increase social welfare by diminishing economic and social segmenta- tion between the two communities. However, these gains tend to be unequally distributed over the two communities. As a result, in a large range of circum- stances these policies might not draw su¢ cient support. The model is built upon the communicative value of languages, but also emphasizes the role of linguistic preferences in the behavior of bilingual individuals.
Resumo:
Tot i que en el nostre territori comptem des de els anys 80 amb diferents models de Document de Voluntats Anticipades (DVA), aquests continuen essent desconeguts tant per la ciutadania com pels professionals de la salut. Aquesta situació ha fet que ens plantegem com a objectiu d’aquest estudi descriure si existeix la correlació entre el fet de proporcionar informació sobre el DVA i la motivació per la seva realització. En aquest estudi hem agafat com a mostra els usuaris del servei de psicogeriatria de la Fundació Sociosanitaria de Manresa l’Hospital de Sant Andreu de Manresa, tenint en compte les recomanacions del Document Sitges del 2005 i d’altres autors que recomanen fer el DVA en situació de demència lleu o moderada. També s’ha tingut present l’elevada prevalença d’aquesta patologia. S'ha dissenyat un assaig clínic comunitari amb aleatorització de dos consultoris d'un servei de psicogeriatria. Els metges del consultori assignat al grup control feien el tractament habitual en relació al DVA, és a dir, no informar els pacients atesos sobre l'existència i característiques del DVA, i els metges del consultori assignat al grup intervenció donaven informació reglada als seus pacients sobre el DVA. En el moment de la inclusió es registrava informació sociodemogràfica i clínica per poder classificar els participants i, també a tots els subjectes inclosos en l'assaig, al cap de tres setmanes se'ls feia una enquesta telefònica per avaluar l'opinió i el coneixement sobre el DVA. De les respostes de l’enquesta podem extreure com a resultats que més del 90% dels subjectes del grup control no coneixen el DVA. També s’observa de manera significativa com les persones del grup intervenció parlen amb el metge,la infermera i/o la família sobre la dependència i la mort, tenint en compte que la mort i la dependència continuen sent un tema tabú, i que la majoria de la població de l’estudi no planifiquen com volen ser atesos. Tanmateix s’observa com un 2’3 % tenia fet el DVA i un 22’7% manifesten la seva voluntat de realitzar-lo. Amb aquest estudi es conclou que el fet de proporcionar informació sobre el DVA als usuaris del servei de psicogeriatria afavoreix que aquests estiguin motivats per la realització d’aquest document; al mateix temps també afavoreix la planificació de les cures i el parlar sobres temes com la mort i/o la dependència amb la família, el metge la infermera.
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
Segmentointi on perinteisesti ollut erityisesti kuluttajamarkkinoinnin työkalu, mutta siirtymä tuotteista palveluihin on lisännyt segmentointitarvetta myös teollisilla markkinoilla. Tämän tutkimuksen tavoite on löytää selkeästi toisistaan erottuvia asiakasryhmiä suomalaisen liikkeenjohdon konsultointiyritys Synocus Groupin tarjoaman case-materiaalin pohjalta. K-means-klusteroinnin avulla löydetään kolme potentiaalista markkinasegmenttiä perustuen siihen, mitkä tarjoamaelementit 105 valikoitua suomalaisen kone- ja metallituoteteollisuuden asiakasta ovat maininneet tärkeimmiksi. Ensimmäinen klusteri on hintatietoiset asiakkaat, jotka laskevat yksikkökohtaisia hintoja. Toinen klusteri koostuu huolto-orientoituneista asiakkaista, jotka laskevat tuntikustannuksia ja maksimoivat konekannan käyttötunteja. Tälle kohderyhmälle kannattaisi ehkä markkinoida teknisiä palveluja ja huoltosopimuksia. Kolmas klusteri on tuottavuussuuntautuneet asiakkaat, jotka ovat kiinnostuneita suorituskyvyn kehittämisestä ja laskevat tonnikohtaisia kustannuksia. He tavoittelevat alempia kokonaiskustannuksia lisääntyneen suorituskyvyn, pidemmän käyttöiän ja alempien huoltokustannusten kautta.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
This thesis discusses adaption of new project management tool at ABB Oy Motors and Generators business unit, Synchronous Machines profit centre. Thesis studies project modeling in general and buries in the Gate Model used at ABB Synchronous Machines. It is essential to understand Gate Model because this new project management tool, called Project Master Document, is created on the base of the existing project model. Thesis also analyzes goals and structure of Project Master Document in order to ease implementation of this new tool. Project Master Document aims to improved customer order fulfillment by clearing order handover interface. Office process, especially responsibilities and target dates, become also clearer after Master Document implementation. The document is built to be frame for whole order fulfillment process including check points for each gate of project model and updated memos from all project meetings. Furthermore, project progress will be clearly stated by status markings and visualized with colors.