940 resultados para Delay equations
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.
Resumo:
We consider an optimal power and rate scheduling problem for a multiaccess fading wireless channel with the objective of minimising a weighted sum of mean packet transmission delay subject to a peak power constraint. The base station acts as a controller which, depending upon the buffer lengths and the channel state of each user, allocates transmission rate and power to individual users. We assume perfect channel state information at the transmitter and the receiver. We also assume a Markov model for the fading and packet arrival processes. The policy obtained represents a form of Indexability.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
We reformulate and extend our recently introduced quantum kinetic theory for interacting fermion and scalar fields. Our formalism is based on the coherent quasiparticle approximation (cQPA) where nonlocal coherence information is encoded in new spectral solutions at off-shell momenta. We derive explicit forms for the cQPA propagators in the homogeneous background and show that the collision integrals involving the new coherence propagators need to be resummed to all orders in gradient expansion. We perform this resummation and derive generalized momentum space Feynman rules including coherent propagators and modified vertex rules for a Yukawa interaction. As a result we are able to set up self-consistent quantum Boltzmann equations for both fermion and scalar fields. We present several examples of diagrammatic calculations and numerical applications including a simple toy model for coherent baryogenesis.
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Expressions for the phase change Φ suffered by microwaves when transmitted through an artificial dielectric composed of metallic discs arranged in a three-dimensional array have been derived with different approaches as follows (i) molecular theory, (ii) electromagnetic theory and (iii) transmission line theory. The phase change depends on the distance t that the wave traverses inside the dielectric and also the spacing d between centre to centre of any two adjacent discs in the three principal directions. Molecular theory indicates Φ as an increasing function of t, whereas, the other two theories indicate Φ as an oscillatory function of t. The transmission line theory also exhibits Φ to be real or imaginary depending on t. Experimental values of Φ as a function of t have been obtained with the help of a microwave (3·2 cms wavelength) interferometer for two dielectrics having d as 1·91 cms and 2·22 cms respectively.
Resumo:
A simple firing delay circuit for 3-φ fully controlled bridge using a phase locked loop is described. The circuit uses very few components and is an improved scheme over the existing methods. The use of this circuit in three-phase thyristor converters and 'circulating current free' mode dual converters is described.
Resumo:
A theoretical approach has been developed to relate the voltage delay transients of the Mg-MnO2 dry cell observed during discharge by two commonly employed modes, viz., (1) at constant current, and (2) across a constant resistance. The approach has been verified by comparison of experimentally obtained transients with those generated from theory. The method may be used to predict the delay parameters of the Mg-MnO2 dry cell under the two modes of discharge and can, in principle, be extended to lithium batteries.