908 resultados para Defective Interfering Particles
Resumo:
We have analyzed the relative energy of nonmagnetic and magnetic low-lying electronic states of Ni atoms adsorbed on regular and defective sites of the MgO(001) surface. To this end cluster and periodic surface models are used within density functional theory. For Ni atoms adsorbed on oxygen vacancies at low coverage, the interaction energy between the metal and the support is much larger than on regular sites. Strong bonding results in a diamagnetic adsorbed species and the energy required to reach the high-spin state increases. Moreover, a correlation appears between the low-spin to high-spin energy difference and the interaction energy hypothesizing that it is possible to prepare the surface to tune the high-spin to low-spin energy difference. Magnetic properties of adsorbed thin films obtained upon increasing coverage are more difficult to interpret. This is because the metallic bond is readily formed and dominates over the effect of the atoms directly bound to the vacancy.
Resumo:
In a previous paper [Hidalgo et al., Phys. Rev. Lett. 103, 118001 (2009)] it was shown that square particles deposited in a silo tend to align with a diagonal parallel to the gravity, giving rise to a deposit with very particular properties. Here we explore, both experimentally and numerically, the effect on these properties of the filling mechanism. In particular, we modify the volume fraction of the initial configuration from which the grains are deposited. Starting from a very dilute case, increasing the volume fraction results in an enhancement of the disorder in the final deposit characterized by a decrease of the final packing fraction and a reduction of the number of particles oriented with their diagonal in the direction of gravity. However, for very high initial volume fractions, the final packing fraction increases again. This result implies that two deposits with the same final packing fraction can be obtained from very different initial conditions. The structural properties of such deposits are analyzed, revealing that, although the final volume fraction is the same, their micromechanical properties notably differ.
Resumo:
Le cancer de la vessie est le deuxième cancer urologique le plus fréquent dans le monde. La plupart des patients (75%) sont initialement diagnostiqués avec un cancer non musculo- invasif. Après résection trans-urétrale, ie traitement standard pour ce type de lésion chez les patients présentant un risque important de récidive/progression consiste en une série d'instillations intravésicales du Bacille de Calmette-Guerin (i.e. le vaccin BCG). Cependant cette "BCG thérapie" est associée à des effets secondaires non négligeables et s'avère inefficace dans 30% des cas, des limitations donc importantes qui soulignent la nécessité de développer des stratégies thérapeutiques alternatives. L'utilisation d'antigènes associés aux tumeurs (TAA) comme vaccin, combinée à une application locale d'immunostimulants sur le site tumoral, est une approche prometteuse en vue de maximiser les réponses immunitaires anti-tumorales localement. Nous montrons que la bactérie vivante atténuée Ty21a, issue du vaccin Vivotif® contre la fièvre typhoïde, peut être utilisée comme immunostimulant intravésical (IVES), mais ce uniquement dans le cas où la bactérie est en phase exponentielle de croissance (Vivotif exp). En effet, l'instillation IVES de Vivotif exp à la suite d'une vaccination par un TAA, un antigène mineur d'histocompatibilité mâle H-Y (Uty), permet d'augmenter de 15 fois le nombre de cellules T CD8 totales et spécifiques de l'antigène dans la vessie. Le recrutement des cellules T est TLR4-dépendent, ce qui suggère un rôle des lipopolysaccharides du Vivotif exp. Par ailleurs, en comparaison avec le contenu bactérien de la capsule de Vivotif, les bactéries en phase exponentielle de croissance permettent également une augmentation préférentielle des chemokines C5/C5a, CXCL1, CXCL2 et CXCL5 dans la vessie, mais pas du nombre de cellules T exprimant les récepteurs apparentés (C5aR et CXCR2). De plus, combiner la vaccination Uty avec le Vivotif exp en IVES permet d'améliorer la survie des souris présentant une tumeur orthotopique de la vessie exprimant l'antigène Uty (lignée tumorale murine MB49). Puisque pour certains cancers, aucun TAA - du moins exprimé à tous les stades tumoraux - n'est identifié, il est nécessaire de développer d'autres approches non vaccinales. Dans une deuxième partie de ce travail de thèse, nous avons donc investigué deux stratégies permettant d'induire une destruction des cellules tumorales, la thérapie génique par gène de suicide, d'une part, et la thérapie photodynamique dans le proche infrarouge (NIR-PDT), d'autre part. Pour appliquer ces thérapies, nous avons utilisé comme vecteur sûr et non toxique une forme non réplicative du virus du « Human Papillomavirus » (HPV) capable de "pseudo-infecter" préférentiellement les souris présentant des tumeurs vésicales (MB49). L'utilisation de pseudovirions (PsV) HPV portant comme gène suicide la thymidine kinase, une enzyme du virus de l'herpès simplex, suivi d'un traitement par la prodrogue Ganciclovir, permet de tuer 90% des cellules MB49 in-vitro ainsi que de ralentir significativement le développement des tumeurs vésicales in-vivo. Par ailleurs, l'emploi de particules pseudo- virales HPV couplées à la phtalocyanine IR700, un pigment photosensible présentant un pouvoir cytotoxique une fois activé, permet de tuer, après application d'une lumière dans le proche infrarouge, quasi 100% des cellules MB49 in-vitro et, plus important, de régresser des tumeurs in-vivo. De façon générale, ce travail de thèse présente des approches thérapeutiques innovantes et prometteuses pour le traitement des patients avec un cancer non musculo-invasif de la vessie. -- Bladder cancer is the second most common urological malignancy in the world. At initial diagnosis, non-muscle invasive bladder cancer (NMIBC) accounts for 75% of bladder cancer. The standard of care of NMIBC consists of intravesical (IVES) treatments with Bacillus- Calmette-Guerin (BCG) following transurethral resections of the lesions. However, repeated BCG treatments are associated with significant side effects and treatment failure may occur in 30% of the cases, underlying the necessity of alternative therapeutic strategies. The use of tumor-associated antigens (TAA) as vaccines followed by the local application of immunostimulants where the tumor resides is a promising approach to increase anti-tumor immune responses locally. We show that live attenuated Ty21a bacteria used from the vivotif® vaccine against typhoid fever can efficiently be used as IVES immunostimulant, only if bacteria are grown to exponential phase (Vivotif exp). In this condition, IVES immunostimulation after TAA vaccination with a minor histocompatibility male antigen HY (Uty) resulted in more than 15-fold increase of both vaccine-specific and total CD8-T cells in the bladder. T cell recruitment was mediated by TLR-4 suggesting that it was mainly mediated by lipopolysaccharides of Vivotif exp. In addition, these bacteria, as compared to the bacterial content of the vivotif capsule preferentially increased C5/C5a, CXCL1, CXCL2 and CXCL5 chemokines, but not the numbers of T cells expressing the cognate receptors (C5aR and CXCR2). Combination of IVES Vivotif exp with Uty vaccination improved survival of mice with pre-established orthotopic Uty-expressing MB49 murine bladder tumors, as compared to vaccination alone. As known TAA are not identified in all cancers, or not expressed in all stages of the tumor, we further investigated two potent approaches able of initiating tumor-cell destruction, suicide-gene therapy and near-infrared (NIR) photodynamic therapy (PDT). Towards a safe and non-toxic application of these therapies, we used Human Papillomavirus (HPV) replication-defective vectors that were able to preferentially pseudo-infect MB49-tumor bearing mice. HPV pseudovirions (PsV) carrying the Herpex-Simplex virus thymidine kinase suicide-gene followed by treatment with the prodrug Ganciclovir resulted in 90% of MB49 cell-death in-vitro and was able to significantly reduce bladder tumor growth in-vivo. Furthermore, HPV virus-like particles coupled to a NIR phtalocyanine dye, IR700 in combination with specific NIR light led to almost 100% of MB49 cell-death in-vitro and more interestingly, to bladder tumors shrinkage in-vivo. Overall, in this thesis, we offer promising therapeutic approaches for application in NMIBC patients.
Resumo:
We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetrable particles. These are a binary mixture and a polydisperse system of particles interacting via the generalized exponential model, which is known to yield cluster crystal phases for the corresponding monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this work do not crystallize and form disordered cluster phases. The clusteringtransition appears as a smooth crossover to a regime in which particles are mostly located in clusters, isolated particles being infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the temperature below the clusteringtransition, the motion of the clusters" centers-of-mass slows down dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain finite and display an activated temperature dependence, indicating that relaxation in the cluster glass occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence of the microscopic dynamics on the transport properties by comparing the MD results with Monte Carlo simulations.
Resumo:
Laser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.
Resumo:
The oxidative potential (OP) of particulate matter has been proposed as a toxicologically relevant metric. This concept is already frequently used for hazard characterization of ambient particles but it is still seldom applied in the occupational field. The objective of this study was to assess the OP in two different types of workplaces and to investigate the relationship between the OP and the physicochemical characteristics of the collected particles. At a toll station, at the entrance of a tunnel ('Tunnel' site), and at three different mechanical yards ('Depot' sites), we assessed particle mass (PM4 and PM2.5 and size distribution), number and surface area, organic and elemental carbon, polycyclic aromatic hydrocarbon (PAH), and four quinones as well as iron and copper concentration. The OP was determined directly on filters without extraction by using the dithiothreitol assay (DTT assay-OP(DTT)). The averaged mass concentration of respirable particles (PM4) at the Tunnel site was about twice the one at the Depot sites (173±103 and 90±36 µg m(-3), respectively), whereas the OP(DTT) was practically identical for all the sites (10.6±7.2 pmol DTT min(-1) μg(-1) at the Tunnel site; 10.4±4.6 pmol DTT min(-1) μg(-1) at the Depot sites). The OP(DTT) of PM4 was mostly present on the smallest PM2.5 fraction (OP(DTT) PM2.5: 10.2±8.1 pmol DTT min(-1) μg(-1); OP(DTT) PM4: 10.5±5.8 pmol DTT min(-1) μg(-1) for all sites), suggesting the presence of redox inactive components in the PM2.5-4 fraction. Although the reactivity was similar at the Tunnel and Depot sites irrespective of the metric chosen (OP(DTT) µg(-1) or OP(DTT) m(-3)), the chemicals associated with OP(DTT) were different between the two types of workplaces. The organic carbon, quinones, and/or metal content (Fe, Cu) were strongly associated with the DTT reactivity at the Tunnel site whereas only Fe and PAH were associated (positively and negatively, respectively) with this reactivity at the Depot sites. These results demonstrate the feasibility of measuring of the OP(DTT) in occupational environments and suggest that the particulate OP(DTT) is integrative of different physicochemical properties. This parameter could be a potentially useful exposure proxy for investigating particle exposure-related oxidative stress and its consequences. Further research is needed mostly to demonstrate the association of OP(DTT) with relevant oxidative endpoints in humans exposed to particles.
Resumo:
Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Morphological and spectroscopic studies of Sr2CeO4 blue phosphor in the form of fine particles prepared from a powdered multi-component precursor, via a combustion method, are reported. Samples were also prepared through a solid-state reaction and from a polymeric precursor for comparison. Citric acid or glycine as fuels in the combustion method lead to a mixture which is heated at 950 ºC for 4 h, resulting in spheroidal particles with a diameter between 250-550 nm. Samples from the polymeric precursor result in spheroidal particles (350-550 nm) and from the solid-state reaction in irregular particles (~ 5 mum). Therefore, the combustion method is adequate for preparation of Sr2CeO4 in the form of spherical fine particles.
Resumo:
The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.
Resumo:
In the present work, a simple and rapid ligand-less, in situ, surfactant-based solid phase extraction for the preconcentration of copper in water samples was developed. In this method, a cationic surfactant (n-dodecyltrimethylammonium bromide) was dissolved in an aqueous sample followed by the addition of an appropriate ion-pairing agent (ClO4-). Due to the interaction between the surfactant and ion-pairing agent, solid particles were formed and subsequently used for the adsorption of Cu(OH)2 and CuI. After centrifugation, the sediment was dissolved in 1.0 mL of 1 mol L-1 HNO3 in ethanol and aspirated directly into the flame atomic absorption spectrometer. In order to obtain the optimum conditions, several parameters affecting the performance of the LL-ISS-SPE, including the volumes of DTAB, KClO4, and KI, pH, and potentially interfering ions, were optimized. It was found that KI and phosphate buffer solution (pH = 9) could extract more than 95% of copper ions. The amount of copper ions in the water samples varied from 3.2 to 4.8 ng mL-1, with relative standard deviations of 98.5%-103%. The determination of copper in water samples was linear over a concentration range of 0.5-200.0 ng mL-1. The limit of detection (3Sb/m) was 0.1 ng mL-1 with an enrichment factor of 38.7. The accuracy of the developed method was verified by the determination of copper in two certified reference materials, producing satisfactory results.
Resumo:
The adsorption of Cr(VI) in aqueous solution by magnetic particles of crosslinked chitosan-ethylenediamine-Fe(III) (MPCh-EDA-FeCL) was studied in a batch system. Fe3+ in the MPCh-EDA-FeCL permitted that adsorption of Cr(VI) occurred with maximum efficiency between pH 3 and 11. The maximum adsorption capacity at pH 7.0 was 81.04 mg g-1 at 25 ºC. The adsorption kinetic process was described by the pseudo-second-order model. Thermodynamic parameters indicated spontaneous, exothermic and chemical adsorption nature. The adsorbent was successively regenerated using a 0.1 mol L-1 NaOH solution. Results were satisfactory for treatment of wastewater from the electroplating industry.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Dirt counting and dirt particle characterisation of pulp samples is an important part of quality control in pulp and paper production. The need for an automatic image analysis system to consider dirt particle characterisation in various pulp samples is also very critical. However, existent image analysis systems utilise a single threshold to segment the dirt particles in different pulp samples. This limits their precision. Based on evidence, designing an automatic image analysis system that could overcome this deficiency is very useful. In this study, the developed Niblack thresholding method is proposed. The method defines the threshold based on the number of segmented particles. In addition, the Kittler thresholding is utilised. Both of these thresholding methods can determine the dirt count of the different pulp samples accurately as compared to visual inspection and the Digital Optical Measuring and Analysis System (DOMAS). In addition, the minimum resolution needed for acquiring a scanner image is defined. By considering the variation in dirt particle features, the curl shows acceptable difference to discriminate the bark and the fibre bundles in different pulp samples. Three classifiers, called k-Nearest Neighbour, Linear Discriminant Analysis and Multi-layer Perceptron are utilised to categorize the dirt particles. Linear Discriminant Analysis and Multi-layer Perceptron are the most accurate in classifying the segmented dirt particles by the Kittler thresholding with morphological processing. The result shows that the dirt particles are successfully categorized for bark and for fibre bundles.